07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8
Browse
3 results
Search Results
Item Open Access On the validation of human body models with a driver-in-the-loop simulator(2018) Kempter, Fabian; Fehr, Jörg; Stutzig, Norman; Siebert, TobiasFor the development of modern integrated safety systems, standard simulation models of anthropometric test devices, often called crash test dummies, are inappropriate for Pre-Crash investigations due to missing activation possibilities, tuned characteristics for one specific accident scenario and high passive stiffness properties. To validate safety concepts getting active prior to the crash new tools like suitable virtual models of human occupants are required. Human Body Models (HBM) provide a higher biofidelity and can be equipped with active muscle elements enabling different muscle activation strategies. To improve the muscle activation strategy and the stiffness properties of active HBMs, validation processes on the basis of low-acceleration experiments are inevitable. In contrast to Post Mortem Human Surrogates only low-severity tests can be performed with real human subjects. This paper presents the workflow of a validation process based on an academic scale Driver-in-the-Loop (DiL) simulator in combination with a synchronized measurement chain consisting of an Optitrack stereo vision and an electromyography detection system.Item Open Access Dynamic human body models in vehicle safety : an overview(2023) Fahse, N.; Millard, M.; Kempter, F.; Maier, S.; Roller, M.; Fehr, J.Significant trends in the vehicle industry are autonomous driving, micromobility, electrification and the increased use of shared mobility solutions. These new vehicle automation and mobility classes lead to a larger number of occupant positions, interiors and load directions. As safety systems interact with and protect occupants, it is essential to place the human, with its variability and vulnerability, at the center of the design and operation of these systems. Digital human body models (HBMs) can help meet these requirements and are therefore increasingly being integrated into the development of new vehicle models. This contribution provides an overview of current HBMs and their applications in vehicle safety in different driving modes. The authors briefly introduce the underlying mathematical methods and present a selection of HBMs to the reader. An overview table with guideline values for simulation times, common applications and available variants of the models is provided. To provide insight into the broad application of HBMs, the authors present three case studies in the field of vehicle safety: (i) in-crash finite element simulations and injuries of riders on a motorcycle; (ii) scenario-based assessment of the active pre-crash behavior of occupants with the Madymo multibody HBM; (iii) prediction of human behavior in a take-over scenario using the EMMA model.Item Open Access Implementation and validation of the extended Hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models(2017) Kleinbach, Christian; Martynenko, Oleksandr; Promies, Janik; Häufle, Daniel F. B.; Fehr, Jörg; Schmitt, SynIn the state of the art finite element AHBMs for car crash analysis in the LS-DYNA software material named *MAT_MUSCLE (*MAT_156) is used for active muscles modeling. It has three elements in parallel configuration, which has several major drawbacks: restraint approximation of the physical reality, complicated parameterization and absence of the integrated activation dynamics. This study presents implementation of the extended four element Hill-type muscle model with serial damping and eccentric force-velocity relation including Ca2+ dependent activation dynamics and internal method for physiological muscle routing.