07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 10 of 17
  • Thumbnail Image
    ItemOpen Access
    Numerical modeling of cutting characteristics during short hole drilling : modeling of kinetic characteristics
    (2023) Storchak, Michael; Stehle, Thomas; Möhring, Hans-Christian
    Analyzing the cutting process characteristics opens up significant opportunities to improve various material machining processes. Numerical modeling is a well-established, powerful technique for determining various characteristics of cutting processes. The developed spatial finite element model of short hole drilling is used to determine the kinetic characteristics of the machining process, in particular, the components of cutting force and cutting power. To determine the component model parameters for the numerical model of drilling, the constitutive equation parameters, and the parameters of the contact interaction between the drill and the machined material on the example of AISI 1045 steel machining, the orthogonal cutting process was used. These parameters are determined using the inverse method. The DOE (Design of Experiment) sensitivity analysis was applied as a procedure for determining the component models parameters, which is realized by multiple simulations using the developed spatial FEM model of orthogonal cutting and the subsequent determination of generalized values of the required parameters by finding the intersection of the individual value sets of these parameters. The target values for the DOE analysis were experimentally determined kinetic characteristics of the orthogonal cutting process. The constitutive equation and contact interaction parameters were used to simulate the short hole drilling process. The comparison of experimentally determined and simulated values of the kinetic characteristics of the drilling process for a significant range of cutting speed and drill feed changes has established their satisfactory coincidence. The simulated value deviation from the corresponding measured characteristics in the whole range of cutting speed and drill feed variation did not exceed 23%.
  • Thumbnail Image
    ItemOpen Access
    Generation of mechanical characteristics in workpiece subsurface layers through milling
    (2024) Storchak, Michael; Hlembotska, Larysa; Melnyk, Oleksandr
    The generation of mechanical characteristics in workpiece subsurface layers as a result of the cutting process has a predominant influence on the performance properties of machined parts. The effect of the end milling process on the mechanical characteristics of the machined subsurface layers was evaluated using nondestructive methods: instrumented nanoindentation and sclerometry (scratching). In this paper, the influence of one of the common processes of materials processing by cutting-the process of end tool milling-on the generation of mechanical characteristics of workpiece machined subsurface layers is studied. The effect of the end milling process on the character of mechanical property formation was evaluated through the coincidence of the cutting process energy characteristics with the mechanical characteristics of the machined subsurface layers. The total cutting power and cutting work in the tertiary cutting zone area were used as energy characteristics of the end milling process. The modes of the end milling process are considered as the main parameters affecting these energy characteristics. The mechanical characteristics of the workpiece machined subsurface layers were the microhardness of the subsurface layers and the total work of indenter penetration, determined by instrumental nanoindentation, and the maximum depth of indenter penetration, determined by sclerometry. Titanium alloy Ti10V2Fe3Al (Ti-1023) was used as the machining material. Based on the evaluation of the coincidence of the cutting process energy characteristics with the specified mechanical characteristics of the machined subsurface layers, the milling mode effect of the studied titanium alloy, in particular the cutter feed and cutting speed, on the generated mechanical characteristics was established.
  • Thumbnail Image
    ItemOpen Access
    Generalizable process monitoring for FFF 3D printing with machine vision
    (2023) Werkle, Kim Torben; Trage, Caroline; Wolf, Jan; Möhring, Hans-Christian
    Additive manufacturing has experienced a surge in popularity in both commercial and private sectors over the past decade due to the growing demand for affordable and highly customized products, which are often in direct opposition to the requirements of traditional subtractive manufacturing. Fused Filament Fabrication (FFF) has emerged as the most widely-used additive manufacturing technology, despite challenges associated with achieving contour accuracy. To address this issue, the authors have developed a novel camera-based process monitoring method that enables the detection of errors in the printing process through a layer-by-layer comparison of the actual contour and the target contour obtained via G-Code processing. This method is generalizable and can be applied to different printer models with minimal hardware adjustments using off-the-shelf components. The authors have demonstrated the effectiveness of this method in automatically detecting both coarse and small contour deviations in 3D-printed parts.
  • Thumbnail Image
    ItemOpen Access
    Plasticity resource of cast iron at deforming broaching
    (2023) Nemyrovskyi, Yakiv; Shepelenko, Ihor; Storchak, Michael
    The contact interaction mechanics of deformation broaching in low-plasticity materials is studied. Particular attention is paid to the study of the stress–strain state parameters and the plasticity margin in the deformation zone during the machining of gray cast iron EN-GJL-200. The stress-strain state was analyzed using a finite-element model of the deforming broaching process for each area of the deformation zone. The model parameters of the machined material were determined experimentally by compressing specimens of gray cast iron EN-GJL-200. The changes in the parameters of accumulated strain, stress tensor components, stress triaxiality ratio, hydrostatic stress, and plasticity margin at different deformation zones along the machined specimen depth are analyzed. It is shown that there is a zone of local plastic deformation in conditions of critical contact stresses. This leads to the appearance of tensile stresses that reduce the plasticity margin in the surface layer. The impact of tool geometry on the stress–strain state of the surface layer is also discussed, and recommendations for the optimal working angle of the deforming element are provided based on plasticity margin minimization.
  • Thumbnail Image
    ItemOpen Access
    A data-driven approach for cutting force prediction in FEM machining simulations using gradient boosted machines
    (2024) Reeber, Tim; Wolf, Jan; Möhring, Hans-Christian
    Cutting simulations via the Finite Element Method (FEM) have recently gained more significance due to ever increasing computational performance and thus better resulting accuracy. However, these simulations are still time consuming and therefore cannot be deployed for an in situ evaluation of the machining processes in an industrial environment. This is due to the high non-linear nature of FEM simulations of machining processes, which require considerable computational resources. On the other hand, machine learning methods are known to capture complex non-linear behaviors. One of the most widely applied material models in cutting simulations is the Johnson-Cook material model, which has a great influence on the output of the cutting simulations and contributes to the non-linear behavior of the models, but its influence on cutting forces is sometimes difficult to assess beforehand. Therefore, this research aims to capture the highly non-linear behavior of the material model by using a dataset of multiple short-duration cutting simulations from Abaqus to learn the relationship of the Johnson-Cook material model parameters and the resulting cutting forces for a constant set of cutting conditions. The goal is to shorten the time to simulate cutting forces by encapsulating complex cutting conditions in dependence of material parameters in a single model. A total of five different models are trained and the performance is evaluated. The results show that Gradient Boosted Machines capture the influence of varying material model parameters the best and enable good predictions of cutting forces as well as deliver insights into the relevance of the material parameters for the cutting and thrust forces in orthogonal cutting.
  • Thumbnail Image
    ItemOpen Access
    Interaction of mechanical characteristics in workpiece subsurface layers with drilling process energy characteristics
    (2024) Storchak, Michael; Hlembotska, Larysa; Melnyk, Oleksandr; Baranivska, Nataliia
    The performance properties of various types of parts are predominantly determined by the subsurface layer forming methods of these parts. In this regard, cutting processes, which are the final stage in the manufacturing process of these parts and, of course, their subsurface layers, play a critical role in the formation of the performance properties of these parts. Such cutting processes undoubtedly include the drilling process, the effect of which on the mechanical characteristics of the drill holes subsurface layers is evaluated in this study. This effect was evaluated by analyzing the coincidence of the energy characteristics of the short hole drilling process with the mechanical characteristics of the drilled holes’ subsurface layers. The energy characteristics of the short-hole drilling process were the total drilling power and the cutting work in the tertiary cutting zone, which is predominantly responsible for the generation of mechanical characteristics in the subsurface layers. As mechanical characteristics of the drill holes’ subsurface layers were used, the microhardness of machined surfaces and total indenter penetration work determined by the instrumented nanoindentation method, as well as maximal indenter penetration depth, were determined by the sclerometry method. Through an analysis of the coincidence between the energy characteristics of the drilling process and the mechanical characteristics of the subsurface layers, patterns of the effect of drilling process modes, drill feed, and cutting speed, which essentially determine these energy characteristics, on the studied mechanical characteristics have been established. At the same time, the increase in the energy characteristics of the short-hole drilling process leads to a decrease in the total indenter penetration work and the maximum indenter penetration depth simultaneously with an increase in the microhardness of the drilled holes’ subsurface layers.
  • Thumbnail Image
    ItemOpen Access
    SmartLab vernetzt Produktionsmaschinen : Aufbau einer digitalen Prozesskette in einer bestehenden Produktionsumgebung
    (2023) Schneider, Matthias; Meier, Veronika; Stehle, Thomas; Möhring, Hans-Christian
  • Thumbnail Image
    ItemOpen Access
    Mechanical characteristics generation in the workpiece subsurface layers through cutting
    (2023) Storchak, Michael
    The cutting process generates specific mechanical characteristics in the subsurface layers of the shaped parts. These characteristics have a decisive influence on the working properties and product durability of these parts. The orthogonal cutting process of structural heat-treated steel’s effect on the mechanical properties of the machined subsurface layers was evaluated by instrumented the nanoindentation method and sclerometry (scratch) method. As a result of this study, the relationship between the specific work in the tertiary cutting zone and the total deformation work during indenter penetration during the instrumented nanoindentation was established. The dependence of the indenter penetration depth during sclerometry of the machined subsurface layers of the workpiece was also studied. The orthogonal cutting process was carried out at different cutting speeds and tool rake angles. The cutting speed increase and the increase in the tool rake angle cause an increase in the indenter penetration work during the instrumented nanoindentation and an increase in the maximum indenter penetration depth during sclerometry. Simultaneously, the measured microhardness of the machined surfaces decreases with both an increase in cutting speed and an increase in the tool rake angle.
  • Thumbnail Image
    ItemOpen Access
    Validation of the manufacturing Methodology of prestressed fiber-reinforced polymer concrete by the variation of process parameters
    (2023) Engert, Michelle; Werkle, Kim Torben; Wegner, Robert; Born, Larissa; Gresser, Götz T.; Möhring, Hans-Christian
    Polymer concrete has proved to be advantageous in machine building for many years thanks to its excellent damping properties. Until now, its use was limited to machine beds due to its comparatively low tensile strength. Its use in moving structural components has not been possible until now. Recent research results have shown that this challenge can be met by integrating prestressed carbon fibers. Until now, the production of samples out of prestressed fiber-reinforced polymer concrete has been carried out according to fixed specifications. It is not yet clear whether these specifications are suitable to fully exploit the potential of the material. Samples manufactured to these specifications show at least a large scatter in bending stiffness. Within the scope of this paper, the existing manufacturing process is validated by the variation of process steps. Specifically, this involved the use of a shaker, variation of the dwell time in the mold, variation of the resin content, and the procedure for impregnating the fibers. The characterization of the samples showed that the scatter could only be reduced by increasing the dwell time. However, this leads to a decrease in bending stiffness and, thus, is not suitable for further improvement of the novel material.
  • Thumbnail Image
    ItemOpen Access
    Numerical modeling of cutting characteristics during short hole drilling : part 2 - modeling of thermal characteristics
    (2024) Storchak, Michael; Stehle, Thomas; Möhring, Hans-Christian
    The modeling of machining process characteristics and, in particular, of various cutting processes occupies a significant part of modern research. Determining the thermal characteristics in short hole drilling processes by numerical simulation is the object of the present study. For different contact conditions of the workpiece with the drill cutting inserts, the thermal properties of the machined material were determined. The above-mentioned properties and parameters of the model components were established using a three-dimensional finite element model of orthogonal cutting. Determination of the generalized values of the machined material thermal properties was performed by finding the set intersection of individual properties values using a previously developed software algorithm. A comparison of experimental and simulated values of cutting temperature in the workpiece points located at different distances from the drilled hole surface and on the lateral clearance face of the drill outer cutting insert shows the validity of the developed numerical model for drilling short holes. The difference between simulated and measured temperature values did not exceed 22.4% in the whole range of the studied cutting modes.