07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    ItemOpen Access
    Generation of mechanical characteristics in workpiece subsurface layers through milling
    (2024) Storchak, Michael; Hlembotska, Larysa; Melnyk, Oleksandr
    The generation of mechanical characteristics in workpiece subsurface layers as a result of the cutting process has a predominant influence on the performance properties of machined parts. The effect of the end milling process on the mechanical characteristics of the machined subsurface layers was evaluated using nondestructive methods: instrumented nanoindentation and sclerometry (scratching). In this paper, the influence of one of the common processes of materials processing by cutting-the process of end tool milling-on the generation of mechanical characteristics of workpiece machined subsurface layers is studied. The effect of the end milling process on the character of mechanical property formation was evaluated through the coincidence of the cutting process energy characteristics with the mechanical characteristics of the machined subsurface layers. The total cutting power and cutting work in the tertiary cutting zone area were used as energy characteristics of the end milling process. The modes of the end milling process are considered as the main parameters affecting these energy characteristics. The mechanical characteristics of the workpiece machined subsurface layers were the microhardness of the subsurface layers and the total work of indenter penetration, determined by instrumental nanoindentation, and the maximum depth of indenter penetration, determined by sclerometry. Titanium alloy Ti10V2Fe3Al (Ti-1023) was used as the machining material. Based on the evaluation of the coincidence of the cutting process energy characteristics with the specified mechanical characteristics of the machined subsurface layers, the milling mode effect of the studied titanium alloy, in particular the cutter feed and cutting speed, on the generated mechanical characteristics was established.
  • Thumbnail Image
    ItemOpen Access
    A data-driven approach for cutting force prediction in FEM machining simulations using gradient boosted machines
    (2024) Reeber, Tim; Wolf, Jan; Möhring, Hans-Christian
    Cutting simulations via the Finite Element Method (FEM) have recently gained more significance due to ever increasing computational performance and thus better resulting accuracy. However, these simulations are still time consuming and therefore cannot be deployed for an in situ evaluation of the machining processes in an industrial environment. This is due to the high non-linear nature of FEM simulations of machining processes, which require considerable computational resources. On the other hand, machine learning methods are known to capture complex non-linear behaviors. One of the most widely applied material models in cutting simulations is the Johnson-Cook material model, which has a great influence on the output of the cutting simulations and contributes to the non-linear behavior of the models, but its influence on cutting forces is sometimes difficult to assess beforehand. Therefore, this research aims to capture the highly non-linear behavior of the material model by using a dataset of multiple short-duration cutting simulations from Abaqus to learn the relationship of the Johnson-Cook material model parameters and the resulting cutting forces for a constant set of cutting conditions. The goal is to shorten the time to simulate cutting forces by encapsulating complex cutting conditions in dependence of material parameters in a single model. A total of five different models are trained and the performance is evaluated. The results show that Gradient Boosted Machines capture the influence of varying material model parameters the best and enable good predictions of cutting forces as well as deliver insights into the relevance of the material parameters for the cutting and thrust forces in orthogonal cutting.
  • Thumbnail Image
    ItemOpen Access
    Interaction of mechanical characteristics in workpiece subsurface layers with drilling process energy characteristics
    (2024) Storchak, Michael; Hlembotska, Larysa; Melnyk, Oleksandr; Baranivska, Nataliia
    The performance properties of various types of parts are predominantly determined by the subsurface layer forming methods of these parts. In this regard, cutting processes, which are the final stage in the manufacturing process of these parts and, of course, their subsurface layers, play a critical role in the formation of the performance properties of these parts. Such cutting processes undoubtedly include the drilling process, the effect of which on the mechanical characteristics of the drill holes subsurface layers is evaluated in this study. This effect was evaluated by analyzing the coincidence of the energy characteristics of the short hole drilling process with the mechanical characteristics of the drilled holes’ subsurface layers. The energy characteristics of the short-hole drilling process were the total drilling power and the cutting work in the tertiary cutting zone, which is predominantly responsible for the generation of mechanical characteristics in the subsurface layers. As mechanical characteristics of the drill holes’ subsurface layers were used, the microhardness of machined surfaces and total indenter penetration work determined by the instrumented nanoindentation method, as well as maximal indenter penetration depth, were determined by the sclerometry method. Through an analysis of the coincidence between the energy characteristics of the drilling process and the mechanical characteristics of the subsurface layers, patterns of the effect of drilling process modes, drill feed, and cutting speed, which essentially determine these energy characteristics, on the studied mechanical characteristics have been established. At the same time, the increase in the energy characteristics of the short-hole drilling process leads to a decrease in the total indenter penetration work and the maximum indenter penetration depth simultaneously with an increase in the microhardness of the drilled holes’ subsurface layers.
  • Thumbnail Image
    ItemOpen Access
    Numerical modeling of cutting characteristics during short hole drilling : part 2 - modeling of thermal characteristics
    (2024) Storchak, Michael; Stehle, Thomas; Möhring, Hans-Christian
    The modeling of machining process characteristics and, in particular, of various cutting processes occupies a significant part of modern research. Determining the thermal characteristics in short hole drilling processes by numerical simulation is the object of the present study. For different contact conditions of the workpiece with the drill cutting inserts, the thermal properties of the machined material were determined. The above-mentioned properties and parameters of the model components were established using a three-dimensional finite element model of orthogonal cutting. Determination of the generalized values of the machined material thermal properties was performed by finding the set intersection of individual properties values using a previously developed software algorithm. A comparison of experimental and simulated values of cutting temperature in the workpiece points located at different distances from the drilled hole surface and on the lateral clearance face of the drill outer cutting insert shows the validity of the developed numerical model for drilling short holes. The difference between simulated and measured temperature values did not exceed 22.4% in the whole range of the studied cutting modes.
  • Thumbnail Image
    ItemOpen Access
    Assessment of the heat transfer conditions in the cavity of a rotating circular saw
    (2024) Stegmann, Jan; Baumert, Moritz; Kabelac, Stephan; Menze, Christian; Ramme, Johannes; Möhring, Hans-Christian
    To improve machining processes concerning the usage of lubricants, knowledge of the thermo-mechanical and thermo-fluid interactions at the cutting zone is of great importance. This study focuses on the description of the convective heat transfer which occurs during circular sawing when the lubricant is provided via an internal coolant supply. The highly complex flow field inside the cavity of the sawing process is separated into two distinct flow forms, an impingement and a channel flow. With the aid of experimental and numerical studies, the heat transfer characteristics of these two flow forms have been examined for water and a lubricant used in the circular sawing process. Studies have been conducted over a wide range of Reynolds numbers (impingement flow: 2×103
  • Thumbnail Image
    ItemOpen Access
    Determination of chip compression ratio for the orthogonal cutting process
    (2024) Storchak, Michael
    The chip compression ratio is the most important characteristic of various machining processes with chip generation. This characteristic enables the determination of kinetic and other energy loads on the tool and the machined material. This provides an overall evaluation of the machining process and the possibility of its subsequent optimization. This paper presents the results of determining this cutting characteristic by experimental method, analytical calculation, and numerical modeling. For the analytical calculation of the chip compression ratio, an analytical cutting model developed based on the variational principle of the minimum potential energy was used. A finite element model of orthogonal cutting was used for the numerical simulation of the above process characteristic. Experimentally, the chip compression ratio was determined by the ratio of the chip thickness to the cutting depth (undeformed cutting thickness). The chip thickness was determined by direct measurement using chip slices obtained during the cutting process. The Johnson-Cook constitutive equation was used as the machined material model and the Coulomb model was used as the friction model. The generalized parameters’ determination of the constitutive equation was performed through a DOE (Design of Experiment) sensitivity analysis. The variation range of these parameters was chosen based on the analysis of the effect of individual parameters of the constitutive equation on the chip compression ratio value. The largest deviations between the experimental and analytically calculated values of the chip compression ratio did not exceed 21%. At the same time, the largest deviations of simulated values of the indicated cutting characteristic and its experimental values did not exceed 20%. When comparing the experimental values of the chip compression ratio with the corresponding calculated and simulated values, the deviations were within 22%.
  • Thumbnail Image
    ItemOpen Access
    Augmented reality to visualize a finite element analysis for assessing clamping concepts
    (2024) Maier, Walther; Möhring, Hans-Christian; Feng, Qi; Wunderle, Richard
    This paper presents the development of an innovative augmented reality application for evaluating clamping concepts through visualizing the finite element analysis. The focus is on transforming the traditional simulation results into immersive, holographic displays, enabling users to experience and assess finite element analysis in three dimensions. The application development process involves data processing by MATLAB, visualization in the software Unity, and displaying holograms through Microsoft’s Hololens2. The most significant advancement introduces a new algorithm for rendering different finite elements in Unity. The application targets not only university engineering students but also vocational students with limited background in finite element analysis and machining, aiming to make the learning process more interactive and engaging. It was tested in a real machining environment, demonstrating its technical feasibility and potential in engineering education.
  • Thumbnail Image
    ItemOpen Access
    In-process approach for editing the subsurface properties during single-lip deep hole drilling using a sensor-integrated tool
    (2024) Wegert, Robert; Guski, Vinzenz; Schmauder, Siegfried; Möhring, Hans-Christian
    Single-lip deep-hole drilling (SLD) is characterized by high surface quality and compressive residual stress in the subsurface of the drill hole. These properties depend significantly on the thermomechanical conditions in the machining process. The desired subsurface properties can be adjusted in-process via process monitoring near the cutting zone with a sensor-integrated tool and closed loop control when the thermomechanical conditions are maintained in the optimum range. In this paper, a method is presented to control the thermomechanical conditions to adjust the properties in the subsurface. The process model integrated in the controller is implemented as a soft sensor and takes into account the residual stresses, the roughness, the hardness and the grain size in the surface as well as in the subsurface depending on the process control variables, such as the feed rate and cutting speed. The correlation between the process variables, the thermomechanical conditions of the cutting process and the subsurface properties are investigated both experimentally and by finite element (FE) simulations. Within a justified process parameter range, characteristic fields for the soft sensor were established for each property. In addition, the procedure of controller design and the employed hardware and interfaces are presented.