07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Phase errors in high line density CGH used for aspheric testing : beyond scalar approximation
    (2013) Peterhänsel, Sandy; Pruss, Christof; Osten, Wolfgang
    One common way to measure asphere and freeform surfaces is the interferometric Null test, where a computer generated hologram (CGH) is placed in the object path of the interferometer. If undetected phase errors are present in the CGH, the measurement will show systematic errors. Therefore the absolute phase of this element has to be known. This phase is often calculated using scalar diffraction theory. In this paper we discuss the limitations of this theory for the prediction of the absolute phase generated by different implementations of CGH. Furthermore, for regions where scalar approximation is no longer valid, rigorous simulations are performed to identify phase sensitive structure parameters and evaluate fabrication tolerances for typical gratings.
  • Thumbnail Image
    ItemOpen Access
    Opposed-view dark-field digital holographic microscopy
    (2014) Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang
    Scattering and absorption belong to the major problems in imaging the internal layers of a biological specimen. Due to the structural inhomogeneity of the specimen, the distribution of the structures in the upper layers of a given internal structure of interest is different from the lower layers that may result in different interception of scattered light, falling into the angular aperture of the microscope objective, from the object in each imaging view. Therefore, different spatial frequencies of the scattered light can be acquired from different (top and bottom) views. We have arranged an opposed-view dark-field digital holographic microscope (DHM) to collect the scattered light concurrently from both views with the aim to increase the contrast of internal structures and improve the signal-to-noise ratio. Implementing a DHM system gives the possibility to implement digital refocusing process and obtain multilayer images from each side without a depth scan of the object. The method is explained and the results are presented exemplary for a Drosophila embryo.