07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    ItemOpen Access
    Technology selection for inline topography measurement with rover-borne laser spectrometers
    (2024) Ryan, Conor; Haist, Tobias; Laskin, Gennadii; Schröder, Susanne; Reichelt, Stephan
    This work studies enhancing the capabilities of compact laser spectroscopes integrated into space-exploration rovers by adding 3D topography measurement techniques. Laser spectroscopy enables the in situ analysis of sample composition, aiding in the understanding of the geological history of extraterrestrial bodies. To complement spectroscopic data, the inclusion of 3D imaging is proposed to provide unprecedented contextual information. The morphological information aids material characterization and hence the constraining of rock and mineral histories. Assigning height information to lateral pixels creates topographies, which offer a more complete spatial dataset than contextual 2D imaging. To aid the integration of 3D measurement into future proposals for rover-based laser spectrometers, the relevant scientific, rover, and sample constraints are outlined. The candidate 3D technologies are discussed, and estimates of performance, weight, and power consumptions guide the down-selection process in three application examples. Technology choice is discussed from different perspectives. Inline microscopic fringe-projection profilometry, incoherent digital holography, and multiwavelength digital holography are found to be promising candidates for further development.
  • Thumbnail Image
    ItemOpen Access
    Reliability as a key driver for a sustainable design of adaptive load-bearing structures
    (2022) Efinger, Dshamil; Ostertag, Andreas; Dazer, Martin; Borschewski, David; Albrecht, Stefan; Bertsche, Bernd
    The consumption of construction materials and the pollution caused by their production can be reduced by the use of reliable adaptive load-bearing structures. Adaptive load-bearing structures are able to adapt to different load cases by specifically manipulating internal stresses using actuators installed in the structure. One main aspect of quality is reliability. A verification of reliability, and thus the safety of conventional structures, was a design issue. When it comes to adaptive load-bearing structures, the material savings reduce the stiffness of the structure, whereby integrated actuators with sensors and a control take over the stiffening. This article explains why the conventional design process is not sufficient for adaptive load-bearing structures and proposes a method for demonstrating improved reliability and environmental sustainability. For this purpose, an exemplary adaptive load-bearing structure is introduced. A linear elastic model, simulating tension in the elements of the adaptive load-bearing structure, supports the analysis. By means of a representative local load-spectrum, the operating life is estimated based on Woehler curves given by the Eurocode for the critical notches. Environmental sustainability is increased by including reliability and sustainability in design. For an exemplary high-rise adaptive load-bearing structure, this increase is more than 50%.
  • Thumbnail Image
    ItemOpen Access
    BANULA : a novel DLT-based approach for EV charging with high level of user comfort and role-specific data transparency for all parties involved
    (2024) Stetter, Daniel; Höpfer, Tobias; Schmid, Marc; Sturz, Ines; Falkenberger, Simon; Knoll, Nadja
    The core goal of the BANULA research project is to combine customer-oriented and grid-compatible charging of electric vehicles. It addresses the current challenges of the e-mobility ecosystem from the perspective of grid operators and charging infrastructure users and creates added value for every mass market role involved. In the project, the idea of a virtual balancing group based on blockchain technology is implemented. Thereby, it enables extended data acquisition, a real-time data exchange between grid and market participants, proper balancing and grid node-specific load flow determination and, thus, load management.
  • Thumbnail Image
    ItemOpen Access
    Improved a posteriori error bounds for reduced port-Hamiltonian systems
    (2024) Rettberg, Johannes; Wittwar, Dominik; Buchfink, Patrick; Herkert, Robin; Fehr, Jörg; Haasdonk, Bernard
    Projection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a)  a hierarchical error bound and (b)  an error bound based on an auxiliary linear problem , to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid–structure interaction.
  • Thumbnail Image
    ItemOpen Access
    Low-dimensional data-based surrogate model of a continuum-mechanical musculoskeletal system based on non-intrusive model order reduction
    (2023) Kneifl, Jonas; Rosin, David; Avci, Okan; Röhrle, Oliver; Fehr, Jörg
    Over the last decades, computer modeling has evolved from a supporting tool for engineering prototype design to an ubiquitous instrument in non-traditional fields such as medical rehabilitation. This area comes with unique challenges, e.g. the complex modeling of soft tissue or the analysis of musculoskeletal systems. Conventional modeling approaches like the finite element (FE) method are computationally costly when dealing with such models, limiting their usability for real-time simulation or deployment on low-end hardware, if the model at hand cannot be simplified without losing its expressiveness. Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make complex high-fidelity models more widely available regardless. They often involve a dimensionality reduction step, in which the high-dimensional system state is transformed onto a low-dimensional subspace or manifold, and a regression approach to capture the reduced system behavior. While most publications focus on one dimensionality reduction, such as principal component analysis (PCA) (linear) or autoencoder (nonlinear), we consider and compare PCA, kernel PCA, autoencoders, as well as variational autoencoders for the approximation of a continuum-mechanical system. In detail, we demonstrate the benefits of the surrogate modeling approach on a complex musculoskeletal system of a human upper-arm with severe nonlinearities and physiological geometry. We consider both, the model’s deformation and the internal stress as the two main quantities of interest in a FE context. By doing so we are able to create computationally low-cost surrogate models which capture the system behavior with high approximation quality and fast evaluations.