07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Integration of mechatronic functions on additively manufactured components via laser‐assisted selective metal deposition
    (2024) Vieten, Tobias; Weser, Sascha; Schilling, Alexander; Gläser, Kerstin; Zimmermann, André
    The current industrial revolution derives much of its momentum from value creation based on interconnected products and related data based services. Such products must fulfill both mechanical and electrical requirements, making them mechatronic systems. The production of such systems via additive manufacturing (AM) processes offers advantages in achievable complexity, reduction of the amount of individual components, and cost‐effective as well as sustaina ble production of small quantities. In this work, a process chain is presented that allows for refining additively manufactured 3D structures made from industry‐standard materials into mechatronic components by creating electrically conductive structures directly on their surfaces. The process chain is based on masking the component's surface and selectively removing the masking according to the circuit geometry using laser radiation. In a wet-chemical bath process, the surface is then exposed to palladium nuclei, the masking is fully removed and metal layers (copper/nickel/gold) are deposited by electroless plating. The procedure is developed using stereolithography as a model process for AM and transferred to four additional AM methods. In all cases, despite markedly different surface properties, good selectivity of metal deposition is observed as well as adhesion strength and conductivity comparable to industrially common injection‐molded laser direct structured mechatronic interconnect devices.
  • Thumbnail Image
    ItemOpen Access
    Inkjet-printed temperature sensors characterized according to standards
    (2022) Jäger, Jonas; Schwenck, Adrian; Walter, Daniela; Bülau, André; Gläser, Kerstin; Zimmermann, André
    This paper describes the characterization of inkjet-printed resistive temperature sensors according to the international standard IEC 61928-2. The goal is to evaluate such sensors comprehensively, to identify important manufacturing processes, and to generate data for inkjet-printed temperature sensors according to the mentioned standard for the first time, which will enable future comparisons across different publications. Temperature sensors were printed with a silver nanoparticle ink on injection-molded parts. After printing, the sensors were sintered with different parameters to investigate their influences on the performance. Temperature sensors were characterized in a temperature range from 10 °C to 85 °C at 60% RH. It turned out that the highest tested sintering temperature of 200 °C, the longest dwell time of 24 h, and a coating with fluoropolymer resulted in the best sensor properties, which are a high temperature coefficient of resistance, low hysteresis, low non-repeatability, and low maximum error. The determined hysteresis, non-repeatability, and maximum error are below 1.4% of the full-scale output (FSO), and the temperature coefficient of resistance is 1.23-1.31 × 10-3 K-1. These results show that inkjet printing is a capable technology for the manufacturing of temperature sensors for applications up to 85 °C, such as lab-on-a-chip devices.
  • Thumbnail Image
    ItemOpen Access
    Image analysis based evaluation of print quality for inkjet printed structures
    (2023) Horter, Tim; Ruehl, Holger; Yang, Wenqi; Chiang, Yu-Sheng; Gläser, Kerstin; Zimmermann, André
    Inkjet printing for printed electronics is a growing market due to its advantages, including scalability, various usable materials and its digital, pixel based layout design. An important quality factor is the wetting of the ink on the substrate. This article proposes a workflow to evaluate the print quality of specific layouts by means of image analysis. A self-developed image analysis software, which compares a mask with the actual layout, enables a pixel-based analysis of the wetting behavior by the implementation of two parameters called over- and underwetting rate. A comparison of actual and targeted track widths can be performed for the evaluation of different parameters, such as the tested plasma treatment, drop spacing (DS) and substrate temperature. To prove the functionality of the image analyses tool, the print quality of Au structures inkjet printed on cyclic olefin copolymer (COC) substrates was studied experimentally by varying the three previously mentioned parameters. The experimental results showed that the wetting behavior of Au ink deposited on COC substrates influences various line widths differently, leading to higher spreading for smaller line widths. The proposed workflow is suitable for identifying and evaluating multiple tested parameter variations and might be easily adopted for printers for in-process print quality control in industrial manufacturing.
  • Thumbnail Image
    ItemOpen Access
    Aerosol jet printing and interconnection technologies on additive manufactured substrates
    (2022) Werum, Kai; Mueller, Ernst; Keck, Juergen; Jäger, Jonas; Horter, Tim; Gläser, Kerstin; Buschkamp, Sascha; Barth, Maximilian; Eberhardt, Wolfgang; Zimmermann, André
    Nowadays, digital printing technologies such as inkjet and aerosol jet printing are gaining more importance since they have proven to be suitable for the assembly of complex microsystems. This also applies to medical technology applications like hearing aids where patient-specific solutions are required. However, assembly is more challenging than with conventional printed circuit boards in terms of material compatibility between substrate, interconnect material and printed ink. This paper describes how aerosol jet printing of nano metal inks and subsequent assembly processes are utilized to connect electrical components on 3D substrates fabricated by Digital Light Processing (DLP). Conventional assembly technologies such as soldering and conductive adhesive bonding were investigated and characterized. For this purpose, curing methods and substrate pretreatments for different inks were optimized. Furthermore, the usage of electroless plating on printed metal tracks for improved solderability was investigated. Finally, a 3D ear mold substrate was used to build up a technology demonstrator by means of conductive adhesives.