07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    A family of total Lagrangian Petrov-Galerkin Cosserat rod finite element formulations
    (2023) Eugster, Simon R.; Harsch, Jonas
    The standard in rod finite element formulations is the Bubnov-Galerkin projection method, where the test functions arise from a consistent variation of the ansatz functions. This approach becomes increasingly complex when highly nonlinear ansatz functions are chosen to approximate the rod's centerline and cross-section orientations. Using a Petrov-Galerkin projection method, we propose a whole family of rod finite element formulations where the nodal generalized virtual displacements and generalized velocities are interpolated instead of using the consistent variations and time derivatives of the ansatz functions. This approach leads to a significant simplification of the expressions in the discrete virtual work functionals. In addition, independent strategies can be chosen for interpolating the nodal centerline points and cross-section orientations. We discuss three objective interpolation strategies and give an in-depth analysis concerning locking and convergence behavior for the whole family of rod finite element formulations.
  • Thumbnail Image
    ItemOpen Access
    A total Lagrangian, objective and intrinsically locking‐free Petrov-Galerkin SE(3) Cosserat rod finite element formulation
    (2023) Harsch, Jonas; Sailer, Simon; Eugster, Simon R.
    Based on more than three decades of rod finite element theory, this publication combines the successful contributions found in the literature and eradicates the arising drawbacks like loss of objectivity, locking, path-dependence and redundant coordinates. Specifically, the idea of interpolating the nodal orientations using relative rotation vectors, proposed by Crisfield and Jelenić in 1999, is extended to the interpolation of nodal Euclidean transformation matrices with the aid of relative twists; a strategy that arises from the SE(3)-structure of the Cosserat rod kinematics. Applying a Petrov-Galerkin projection method, we propose a rod finite element formulation where the virtual displacements and rotations as well as the translational and angular velocities are interpolated instead of using the consistent variations and time-derivatives of the introduced interpolation formula. Properties such as the intrinsic absence of locking, preservation of objectivity after discretization and parameterization in terms of a minimal number of nodal unknowns are demonstrated by representative numerical examples in both statics and dynamics.