07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    A survey on learning-based robotic grasping
    (2020) Kleeberger, Kilian; Bormann, Richard; Kraus, Werner; Huber, Marco F.
    This review provides a comprehensive overview of machine learning approaches for vision-based robotic grasping and manipulation. Current trends and developments as well as various criteria for categorization of approaches are provided. Model-free approaches are attractive due to their generalization capabilities to novel objects, but are mostly limited to top-down grasps and do not allow a precise object placement which can limit their applicability. In contrast, model-based methods allow a precise placement and aim for an automatic configuration without any human intervention to enable a fast and easy deployment. Both approaches to robotic grasping and manipulation with and without object-specific knowledge are discussed. Due to the large amount of data required to train AI-based approaches, simulations are an attractive choice for robot learning. This article also gives an overview of techniques and achievements in transfers from simulations to the real world.
  • Thumbnail Image
    ItemOpen Access
    Machine learning-based shear force quality prediction of ultrasonic wire bonds : utilizing process data and machine data without additional sensors
    (2024) Buchner, Christoph; Seidler, Christian T.; Huber, Marco F.; Eigenbrod, Hartmut; Ribbeck, Hans-Georg von; Schlicht, Franz
    Ultrasonic wire bonding is a highly automated production process that is used billions of times a year in the electronics and electromobility industries. Due to the complexity of the process and the large number of influencing parameters, there are currently no automated methods that can be used without additional sensors to evaluate the shear force bond quality quantitatively and non-destructively with sufficiently high precision. For this reason, this paper presents a new methodology that uses machine learning to enable quantitative, non-destructive prediction of bond quality without additional sensors. For this purpose, a machine learning algorithm was developed that uses various machine data and process data from existing sensors to quantitatively predict the shear force of the bonded joint. In addition, features are extracted from process time series, such as current, power, and frequency of the ultrasonic generator as well as deformation during bonding. Of the total of 2,090 features considered, the number of features could be reduced to 26 by recursive feature elimination, while maintaining the prediction accuracy. By using optimized deep neural networks, on average, a prediction precision of the regression on the shear force of the source bond of over 89.6% R 2 -score and a mean absolute error of 241 cN can be achieved.