07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8
Browse
2 results
Search Results
Item Open Access Acceleration-based disturbance compensation for elastic rack-and-pinion drives(2021) Brenner, Felix; Lechler, Armin; Verl, AlexanderRack-and-pinion drives are mainly used for large machine tools and are often operated with indirect position control. Due to the lack of state information on the output side, this results in reduced accuracy regarding the table position. In addition, the system can only react inadequately to disturbances outside the control loop, meaning that often insufficient results can be achieved in typical application scenarios such as milling. To meet the increasing dynamic and accuracy requirements of the modern manufacturing industry, this paper presents a highly dynamic acceleration-based disturbance compensation method. For this purpose, the table acceleration is estimated using a dynamical model of the drive train and compared to the signal from an additional acceleration sensor attached to the machine table. Based on the resulting difference, an additional compensation torque is provided, which suppresses the disturbance in counterphase. The approach is tested experimentally on an open control platform with industrial drive components and the behavior is investigated based on compliance frequency responses and externally applied milling forces. At the same time, a standardized parametrization methodology is developed and the robustness is evaluated by varying table masses. In summary, a considerable improvement of the dynamic disturbance behavior can be achieved compared to the conventional system without compensator.Item Open Access Model predictive control for compliant feed drives with offset-free tracking behavior(2023) Leipe, Valentin; Hinze, Christoph; Lechler, Armin; Verl, AlexanderIndustrial machine tool feed drives are predominantly controlled by cascade control due to their low tuning complexity and inherent robustness. However, the cascaded structure requires the inner cascades to have higher dynamics than the outer cascades, which limits the achievable dynamic accuracy. Direct control approaches, which substitute the position and velocity cascade, offer the potential to utilize the unused potential. A promising approach is model predictive control (MPC), which optimizes the manipulated variable with a plant model along a prediction horizon. However, model uncertainties between the nominal model and the real plant lead to tracking errors. Therefore, this paper presents, a linear MPC (LMPC) and an adaptive MPC (AMPC) with an additional integral action to robustly compensate for model mismatches. Both controllers use a compliant model, are real-time capable with a sample rate of 2kHzand consider state and input space constraints. The AMPC accounts for position-varying stiffness and friction. The controllers are experimentally compared with classical P-PI cascaded control on a ball screw drive. They show a tracking error reduction of 37%(LMPC) and 44%(AMPC) during a high speed motion profile and an increase in bandwidth of 180%(LMPC) and 184%(AMPC), resulting in significantly improved dynamic accuracy.