07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8
Browse
21 results
Search Results
Item Open Access Use of PtC nanotips for low-voltage quantum tunneling applications(2022) Haub, Michael; Guenther, Thomas; Bogner, Martin; Zimmermann, AndréThe use of focused ion and focused electron beam (FIB/FEB) technology permits the fabrication of micro- and nanometer scale geometries. Therefore, FIB/FEB technology is a favorable technique for preparing TEM lamellae, nanocontacts, or nanowires and repairing electronic circuits. This work investigates FIB/FEB technology as a tool for nanotip fabrication and quantum mechanical tunneling applications at a low tunneling voltage. Using a gas injection system (GIS), the Ga-FIB and FEB technology allows both additive and subtractive fabrication of arbitrary structures. Using energy dispersive X-ray spectroscopy (EDX), resistance measurement (RM), and scanning tunneling microscope (STM)/spectroscopy (STS) methods, the tunneling suitability of the utilized metal–organic material–platinum carbon (PtC) is investigated. Thus, to create electrode tips with radii down to 15 nm, a stable and reproducible process has to be developed. The metal–organic microstructure analysis shows suitable FIB parameters for the tunneling effect at high aperture currents (260 pA, 30 kV). These are required to ensure the suitability of the electrodes for the tunneling effect by an increased platinum content (EDX), a low resistivity (RM), and a small band gap (STM). The STM application allows the imaging of highly oriented pyrolytic graphite (HOPG) layers and demonstrates the tunneling suitability of PtC electrodes based on high FIB aperture currents and a low tunneling voltage.Item Open Access Analysis of tempering effects on LDS-MID and PCB substrates for HF applications(2023) Wolf, Marius; Werum, Kai; Guenther, Thomas; Schleeh, Lisa; Eberhardt, Wolfgang; Zimmermann, AndréMechatronic Integrated Devices or Molded Interconnect Devices (MID) are three-dimensional (3D) circuit carriers. They are mainly fabricated by laser direct structuring (LDS) and subsequent electroless copper plating of an injection molded 3D substrate. Such LDS-MID are used in many applications today, especially antennas. However, in high frequency (HF) systems in 5G and radar applications, the demand on 3D circuit carriers and antennas increases. Electroless copper, widely used in MID, has significantly lower electrical conductivity compared to pure copper. Its lower conductivity increases electrical loss, especially at higher frequencies, where signal budget is critical. Heat treatment of electroless copper deposits can improve their conductivity and adhesion to the 3D substrates. This paper investigates the effects induced by tempering processes on the metallization of LDS-MID substrates. As a reference, HF Printed Circuit Boards (PCB) substrates are also considered. Adhesion strength and conductivity measurements, as well as permittivity and loss angle measurements up to 1 GHz, were carried out before and after tempering processes. The main influencing factors on the tempering results were found to be tempering temperature, atmosphere, and time. Process parameters like the heating rate or applied surface finishes had only a minor impact on the results. It was found that tempering LDS-MID substrates can improve the copper adhesion and lower their electrical resistance significantly, especially for plastics with a high melting temperature. Both improvements could improve the reliability of LDS-MID, especially in high frequency applications. Firstly, because increased copper adhesion can prevent delamination and, secondly, because the lowered electrical resistance indicates, in accordance with the available literature, a more ductile copper metallization and thus a lower risk of microcracks.Item Open Access A 10 V transfer standard based on low-noise solid-state Zener voltage reference ADR1000(2024) Bülau, André; Walter, Daniela; Zimmermann, AndréVoltage standards are widely used to transfer volts from Josephson voltage standards (JVSs) at national metrology institutes (NMIs) into calibration labs to maintain the volts and to transfer them to test equipment at production lines. Therefore, commercial voltage standards based on Zener diodes are used. Analog Devices Inc. (San Jose, CA, USA), namely, Eric Modica, introduced the ADR1000KHZ, a successor to the legendary LTZ1000, at the Metrology Meeting 2021. The first production samples were already available prior to this event. In this article, this new temperature-stabilized Zener diode is compared to several others as per datasheet specifications. Motivated by the superior parameters, a 10 V transfer standard prototype for laboratory use with commercial off-the-shelf components such as resistor networks and chopper amplifiers was built. How much effort it takes to reach the given parameters was investigated. This paper describes how the reference was set up to operate it at its zero-temperature coefficient (z.t.c.) temperature and to lower the requirements for the oven stability. Furthermore, it is shown how the overall temperature coefficient (t.c.) of the circuit was reduced. For the buffered Zener voltage, a t.c. of almost zero, and with amplification to 10 V, a t.c. of <0.01 µV/V/K was achieved in a temperature span of 15 to 31 °C. For the buffered Zener voltage, a noise of ~584 nVp-p and for the 10 V output, ~805 nVp-p were obtained. Finally, 850 days of drift data were taken by comparing the transfer standard prototype to two Fluke 7000 voltage standards according to the method described in NBS Technical Note 430. The drift specification was, however, not met.Item Open Access Direct processing of PVD hard coatings via focused ion beam milling for microinjection molding(2023) Ruehl, Holger; Guenther, Thomas; Zimmermann, AndréHard coatings can be applied onto microstructured molds to influence wear, form filling and demolding behaviors in microinjection molding. As an alternative to this conventional manufacturing procedure, “direct processing” of physical-vapor-deposited (PVD) hard coatings was investigated in this study, by fabricating submicron features directly into the coatings for a subsequent replication via molding. Different diamondlike carbon (DLC) and chromium nitride (CrN) PVD coatings were investigated regarding their suitability for focused ion beam (FIB) milling and microinjection molding using microscope imaging and areal roughness measurements. Each coating type was deposited onto high-gloss polished mold inserts. A specific test pattern containing different submicron features was then FIB-milled into the coatings using varied FIB parameters. The milling results were found to be influenced by the coating morphology and grain microstructure. Using injection–compression molding, the submicron structures were molded onto polycarbonate (PC) and cyclic olefin polymer (COP). The molding results revealed contrasting molding performances for the studied coatings and polymers. For CrN and PC, a sufficient replication fidelity based on AFM measurements was achieved. In contrast, only an insufficient molding result could be obtained for the DLC. No abrasive wear or coating delamination could be found after molding.Item Open Access FIB-SEM tomography for porosity characterization of inkjet printed nanoparticle gold ink(2024) Ruehl, Holger; Reguigui, Hajer; Guenther, Thomas; Zimmermann, AndréInkjet printing is a versatile technology for the manufacturing of electronic devices to be used in various applications [1,2]. Common inks to create conductive layers are suspensions of a solvent with metal nanoparticles such as gold or silver [3]. After the deposition and solidification of an ink on a substrate, the metal nanoparticles are sintered to realize the conductivity of the printed layer. A porous, solid metal matrix remains, whereby the conductivity of the metal layer tends to be dependent on the porosity. To characterize the porosity of inkjet printed conductive layers, focused ion beam-scanning electron microscope (FIB-SEM) tomography is suggested as a potential characterization method in the presented study. For the experiment, a wafer diced silicon substrate with size of 10 x 10 mm² was used, onto which a 1.2 µm thin layer of commercially available nanoparticle gold ink was inkjet printed and then sintered. Subsequently, a four-step procedure for the FIB-SEM tomography-based porosity characterization was performed: 1) FIB preparation of the volume of interest (VOI), 2) serial sectioning including image acquisition, 3) image processing and 4) 3D-reconstruction and porosity analysis. The steps 1) and 2) were conducted using a FIB-SEM dual beam system ZEISS AURIGA 40 (Carl Zeiss Microscopy Deutschland GmbH, Germany). Prior to serial sectioning, a thin platinum layer was FIB induced deposited on top of the inkjet printed gold layer. A cube-shaped VOI with the size 5000 x 6000 x 5000 nm³ was then prepared by FIB milling. The surface to be sectioned was end face polished and a line trench serving as a reference marker for the image processing was milled along the VOI. The prepared VOI prior to FIB sectioning is shown in Figure 1. a). Next, the serial sectioning was conducted. The ion acceleration voltage was set to 30 kV. The aperture current was set to 50 pA, resulting in an ion beam spot size of 12.5 nm, which corresponds to the section slice thickness. No melting and re-sintering of the solid metal structure could be observed during sectioning. SEM images of the revealing surface areas were acquired with 1024 x 768 pixels image resolution and a pixel size of 5.82 nm. Both a secondary electron (SE) detector as well as a backscattered electron (BSE) detector were used for imaging. In total, a 2D stack of 368 SEM images was recorded. For comparison of individual sections, Figure 1. b) and c) show BSE detector images of the cross-sectioned VOI after slice 70 and slice 140. One can clearly see that the size and distribution of sintered metal particles varies along the VOI, forming a porosity network within the solid gold. Since the images acquired with the BSE detector presented a higher contrast and thus, a better distinction between the pores and the metal structure, these images were used for the image processing and final porosity analysis, for which the software AVIZO (Thermo Fisher Scientific Inc., USA) was used. First, the 2D images were aligned to correct for the shifts which occurred during the serial sectioning. Then, a sub-VOI was cropped out to exclude the reference line. The new 3D VOI was of a size of 3026 x 1164 x 2750 nm³, representing a stack of BSE detector images ranging from slice 30 to 250. Noise interference was minimized by applying a Gaussian filter. Afterwards, thresholding was applied as a segmentation technique to differentiate between pores and the solid gold as well as erosion as morphological operation. As a result, a reconstructed 3D model of the pores located in the solid gold was obtained, as shown in Figure 2. a). Using this 3D pore model, the number of pores and their diameters within the VOI could be determined. For the calculation of the pore diameters, each pore was considered to be of a spherical shape. A total of 1509 pores was counted. The pore diameter distribution is shown in the box plot in Figure 2. b). As it can be obtained from Figure 2. b), a pore size of 23 nm represents the lower quartile, while a pore size of 112 nm represents the upper quartile. The median pore size is 44 nm, while the mean is 63 nm, which indicates a trend towards smaller pores surrounded by larger pores. Based on the obtained results, FIB-SEM tomography with subsequent image processing is assessed by the authors to be a proper method to characterize the porosity of inkjet printed conductive layers, which was tested by means of a nanoparticle gold ink.Item Open Access Review on excess noise measurements of resistors(2023) Walter, Daniela; Bülau, André; Zimmermann, AndréIncreasing demands for precision electronics require individual components such as resistors to be specified, as they can be the limiting factor within a circuit. To specify quality and long-term stability of resistors, noise measurements are a common method. This review briefly explains the theoretical background, introduces the noise index and provides an insight on how this index can be compared to other existing parameters. It then focuses on the different methods to measure excess noise in resistors. The respective advantages and disadvantages are pointed out in order to simplify the decision of which setup is suitable for a particular application. Each method is analyzed based on the integration of the device under test, components used, shielding considerations and signal processing. Furthermore, our results on the excess noise of resistors and resistor networks are presented using two different setups, one for very low noise measurements down to 20 µHz and one for broadband up to 100 kHz. The obtained data from these measurements are then compared to published data. Finally, first measurements on commercial strain gauges and inkjet-printed strain gauges are presented that show an additional 1/fα component compared to commercial resistors and resistor networks.Item Open Access Injection compression molding of LDS-MID for millimeter wave applications(2023) Wolf, Marius; Werum, Kai; Eberhardt, Wolfgang; Guenther, Thomas; Zimmermann, AndréLDS-MIDs (laser direct structured mechatronic integrated devices) are 3D (three-dimensional) circuit carriers that are used in many applications with a focus on antennas. However, thanks to the rising frequencies of HF (high-frequency) systems in 5G and radar applications up to the mmWave (millimeter wave) region, the requirements regarding the geometrical accuracy and minimal wall thicknesses for proper signal propagation in mmWave circuits became more strict. Additionally, interest in combining those with 3D microstructures like trenches or bumps for optimizing transmission lines and subsequent mounting processes is rising. The change from IM (injection molding) to ICM (injection compression molding) could offer a solution for improving the 3D geometries of LDS-MIDs. To enhance the scientific insight into this process variant, this paper reports on the manufacturing of LDS-MIDs for mmWave applications. Measurements of the warpage, homogeneity of local wall thicknesses, and replication accuracy of different trenches and bumps for mounting purposes are presented. Additionally, the effect of a change in the manufacturing process from IM to ICM regarding the dielectric properties of the used thermoplastics is reported as well as the influence of ICM on the properties of LDS metallization - in particular the metallization roughness and adhesion strength. This paper is then concluded by reporting on the HF performance of CPWs (coplanar waveguides) on LDS-MIDs in comparison to an HF-PCB.Item Open Access Injection molding of encapsulated diffractive optical elements(2023) Wagner, Stefan; Treptow, Kevin; Weser, Sascha; Drexler, Marc; Sahakalkan, Serhat; Eberhardt, Wolfgang; Guenther, Thomas; Pruss, Christof; Herkommer, Alois; Zimmermann, AndréMicrostructuring techniques, such as laser direct writing, enable the integration of microstructures into conventional polymer lens systems and may be used to generate advanced functionality. Hybrid polymer lenses combining multiple functions such as diffraction and refraction in a single component become possible. In this paper, a process chain to enable encapsulated and aligned optical systems with advanced functionality in a cost-efficient way is presented. Within a surface diameter of 30 mm, diffractive optical microstructures are integrated in an optical system based on two conventional polymer lenses. To ensure precise alignment between the lens surfaces and the microstructure, resist-coated ultra-precision-turned brass substrates are structured via laser direct writing, and the resulting master structures with a height of less than 0.002 mm are replicated into metallic nickel plates via electroforming. The functionality of the lens system is demonstrated through the production of a zero refractive element. This approach provides a cost-efficient and highly accurate method for producing complicated optical systems with integrated alignment and advanced functionality.Item Open Access Dielectric properties of PEEK/PEI blends as substrate material in high-frequency circuit board applications(2024) Scherzer, Tim; Wolf, Marius; Werum, Kai; Ruckdäschel, Holger; Eberhardt, Wolfgang; Zimmermann, AndréSubstrate materials for printed circuit boards must meet ever-increasing requirements to keep up with electronics technology development. Especially in the field of high-frequency applications such as radar and cellular broadcasting, low permittivity and the dielectric loss factor are key material parameters. In this work, the dielectric properties of a high-temperature, thermoplastic PEEK/PEI blend system are investigated at frequencies of 5 and 10 GHz under dried and ambient conditions. This material blend, modified with a suitable filler system, is capable of being used in the laser direct structuring (LDS) process. It is revealed that the degree of crystallinity of neat PEEK has a notable influence on the dielectric properties, as well as the PEEK phase structure in the blend system developed through annealing. This phenomenon can in turn be exploited to minimize permittivity values at 30 to 40 wt.-% PEI in the blend, even taking into account the water uptake present in thermoplastics. The dielectric loss follows a linear mixing rule over the blend range, which proved to be true also for PEEK/PEI LDS compounds.Item Open Access Towards reliable parameter extraction in MEMS final module testing using Bayesian inference(2022) Heringhaus, Monika E.; Zhang, Yi; Zimmermann, André; Mikelsons, LarsIn micro-electro-mechanical systems (MEMS) testing high overall precision and reliability are essential. Due to the additional requirement of runtime efficiency, machine learning methods have been investigated in recent years. However, these methods are often associated with inherent challenges concerning uncertainty quantification and guarantees of reliability. The goal of this paper is therefore to present a new machine learning approach in MEMS testing based on Bayesian inference to determine whether the estimation is trustworthy. The overall predictive performance as well as the uncertainty quantification are evaluated with four methods: Bayesian neural network, mixture density network, probabilistic Bayesian neural network and BayesFlow. They are investigated under the variation in training set size, different additive noise levels, and an out-of-distribution condition, namely the variation in the damping factor of the MEMS device. Furthermore, epistemic and aleatoric uncertainties are evaluated and discussed to encourage thorough inspection of models before deployment striving for reliable and efficient parameter estimation during final module testing of MEMS devices. BayesFlow consistently outperformed the other methods in terms of the predictive performance. As the probabilistic Bayesian neural network enables the distinction between epistemic and aleatoric uncertainty, their share of the total uncertainty has been intensively studied.
- «
- 1 (current)
- 2
- 3
- »