Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
3 results
Search Results
Item Open Access Reliability as a key driver for a sustainable design of adaptive load-bearing structures(2022) Efinger, Dshamil; Ostertag, Andreas; Dazer, Martin; Borschewski, David; Albrecht, Stefan; Bertsche, BerndThe consumption of construction materials and the pollution caused by their production can be reduced by the use of reliable adaptive load-bearing structures. Adaptive load-bearing structures are able to adapt to different load cases by specifically manipulating internal stresses using actuators installed in the structure. One main aspect of quality is reliability. A verification of reliability, and thus the safety of conventional structures, was a design issue. When it comes to adaptive load-bearing structures, the material savings reduce the stiffness of the structure, whereby integrated actuators with sensors and a control take over the stiffening. This article explains why the conventional design process is not sufficient for adaptive load-bearing structures and proposes a method for demonstrating improved reliability and environmental sustainability. For this purpose, an exemplary adaptive load-bearing structure is introduced. A linear elastic model, simulating tension in the elements of the adaptive load-bearing structure, supports the analysis. By means of a representative local load-spectrum, the operating life is estimated based on Woehler curves given by the Eurocode for the critical notches. Environmental sustainability is increased by including reliability and sustainability in design. For an exemplary high-rise adaptive load-bearing structure, this increase is more than 50%.Item Open Access The 10th International Conference on Life Cycle Management 2021 : Stuttgart, Germany, September 05-08, 2021(2021) Fischer, Matthias; Barkmeyer, Mercedes; Albrecht, Stefan; Braune, Anna; Leistner, Philip; Seifert, Rainer; Kreissig, JohannesItem Open Access Bringing light into the dark : overview of environmental impacts of carbon fiber production and potential levers for reduction(2023) Prenzel, Tobias Manuel; Hohmann, Andrea; Prescher, Tim; Angerer, Kerstin; Wehner, Daniel; Ilg, Robert; Reden, Tjark von; Drechsler, Klaus; Albrecht, StefanCarbon fibers (CFs) are a crucial material for lightweight structures with advanced mechanical performance. However, there is still a paucity of detailed understanding regarding the environmental impacts of production. Previously, mostly singled-out scenarios for CF production have been assessed, often based on scarce transparent inventory data. To expand the current knowledge and create a robust database for future evaluation, a life cycle assessment (LCA) was carried out. To this end, a detailed industry-approved LCI is published, which also proved plausible against the literature. Subsequently, based on a global scenario representing the market averages for precursor and CF production, the most relevant contributors to climate change (EF3.1 climate change, total) and the depletion of fossil energy carriers (EF3.1 resource use, fossil) were identified. The energy consumption in CF manufacturing was found to be responsible for 59% of the climate change and 48% of the fossil resource use. To enable a differentiated discussion of manufacturing locations and process energy consumption, 24 distinct scenarios were assessed. The findings demonstrate the significant dependence of the results on the scenarios’ boundary conditions: climate change ranges from 13.0 to 34.1 kg CO2 eq./kg CF and resource use from 262.3 to 497.9 MJ/kg CF. Through the investigated scenarios, the relevant reduction potentials were identified. The presented results help close an existing data gap for high-quality, regionalized, and technology-specific LCA results for the production of CF.