Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    A probabilistic approach to characterizing drought using satellite gravimetry
    (2024) Saemian, Peyman; Tourian, Mohammad J.; Elmi, Omid; Sneeuw, Nico; AghaKouchak, Amir
    In the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor GRACE Follow‐On (GRACE‐FO), have become invaluable tools for characterizing drought through measurements of Total Water Storage Anomaly (TWSA). However, the existing approaches have often overlooked the uncertainties in TWSA that stem from GRACE orbit configuration, background models, and intrinsic data errors. Here we introduce a fresh view on this problem which incorporates the uncertainties in the data: the Probabilistic Storage‐based Drought Index (PSDI). Our method leverages Monte Carlo simulations to yield realistic realizations for the stochastic process of the TWSA time series. These realizations depict a range of plausible drought scenarios that later on are used to characterize drought. This approach provides probability for each drought category instead of selecting a single final category at each epoch. We have compared PSDI with the deterministic approach (Storage‐based Drought Index, SDI) over major global basins. Our results show that the deterministic approach often leans toward an overestimation of storage‐based drought severity. Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, spanning continents from the United States to Europe, the Middle East, Southern Africa, South America, and Australia. In each case, PSDI emerges as a reliable indicator for characterizing drought conditions, providing a more comprehensive perspective than conventional deterministic indices. In contrast to the common deterministic view, our probabilistic approach provides a more realistic characterization of the TWS drought, making it more suited for adaptive strategies and realistic risk management.
  • Thumbnail Image
    ItemOpen Access
    Current availability and distribution of Congo Basin’s freshwater resources
    (2023) Tourian, Mohammad J.; Papa, Fabrice; Elmi, Omid; Sneeuw, Nico; Kitambo, Benjamin; Tshimanga, Raphael M.; Paris, Adrien; Calmant, Stéphane
    The Congo Basin is of global significance for biodiversity and the water and carbon cycles. However, its freshwater availability and distribution remain relatively unknown. Using satellite data, here we show that currently the Congo Basin’s Total Drainable Water Storage lies within a range of 476 km 3 to 502 km 3 , unevenly distributed throughout the region, with 63% being stored in the southernmost sub-basins, Kasaï (220-228 km 3 ) and Lualaba (109-169 km 3 ), while the northern sub-basins contribute only 173 ± 8 km 3 . We further estimate the hydraulic time constant for draining its entire water storage to be 4.3 ± 0.1 months, but, regionally, permanent wetlands and large lakes act as resistors resulting in greater time constants of up to 105 ± 3 months. Our estimate provides a robust basis to address the challenges of water demand for 120 million inhabitants, a population expected to double in a few decades.