Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Analysis of target data-dependent greedy kernel algorithms : convergence rates for f-, f· P- and f/P-greedy
    (2022) Wenzel, Tizian; Santin, Gabriele; Haasdonk, Bernard
    Data-dependent greedy algorithms in kernel spaces are known to provide fast converging interpolants, while being extremely easy to implement and efficient to run. Despite this experimental evidence, no detailed theory has yet been presented. This situation is unsatisfactory, especially when compared to the case of the data-independent P-greedy algorithm, for which optimal convergence rates are available, despite its performances being usually inferior to the ones of target data-dependent algorithms. In this work, we fill this gap by first defining a new scale of greedy algorithms for interpolation that comprises all the existing ones in a unique analysis, where the degree of dependency of the selection criterion on the functional data is quantified by a real parameter. We then prove new convergence rates where this degree is taken into account, and we show that, possibly up to a logarithmic factor, target data-dependent selection strategies provide faster convergence. In particular, for the first time we obtain convergence rates for target data adaptive interpolation that are faster than the ones given by uniform points, without the need of any special assumption on the target function. These results are made possible by refining an earlier analysis of greedy algorithms in general Hilbert spaces. The rates are confirmed by a number of numerical examples.
  • Thumbnail Image
    ItemOpen Access
    Symplectic model order reduction with non-orthonormal bases
    (2019) Buchfink, Patrick; Bhatt, Ashish; Haasdonk, Bernard
    Parametric high-fidelity simulations are of interest for a wide range of applications. But the restriction of computational resources renders such models to be inapplicable in a real-time context or in multi-query scenarios. Model order reduction (MOR) is used to tackle this issue. Recently, MOR is extended to preserve specific structures of the model throughout the reduction, e.g. structure-preserving MOR for Hamiltonian systems. This is referred to as symplectic MOR. It is based on the classical projection-based MOR and uses a symplectic reduced order basis (ROB). Such a ROB can be derived in a data-driven manner with the Proper Symplectic Decomposition (PSD) in the form of a minimization problem. Due to the strong nonlinearity of the minimization problem, it is unclear how to efficiently find a global optimum. In our paper, we show that current solution procedures almost exclusively yield suboptimal solutions by restricting to orthonormal ROBs. As new methodological contribution, we propose a new method which eliminates this restriction by generating non-orthonormal ROBs. In the numerical experiments, we examine the different techniques for a classical linear elasticity problem and observe that the non-orthonormal technique proposed in this paper shows superior results with respect to the error introduced by the reduction.
  • Thumbnail Image
    ItemOpen Access
    Greedy kernel methods for approximating breakthrough curves for reactive flow from 3D porous geometry data
    (2024) Herkert, Robin; Buchfink, Patrick; Wenzel, Tizian; Haasdonk, Bernard; Toktaliev, Pavel; Iliev, Oleg
    We address the challenging application of 3D pore scale reactive flow under varying geometry parameters. The task is to predict time-dependent integral quantities, i.e., breakthrough curves, from the given geometries. As the 3D reactive flow simulation is highly complex and computationally expensive, we are interested in data-based surrogates that can give a rapid prediction of the target quantities of interest. This setting is an example of an application with scarce data, i.e., only having a few available data samples, while the input and output dimensions are high. In this scarce data setting, standard machine learning methods are likely to fail. Therefore, we resort to greedy kernel approximation schemes that have shown to be efficient meshless approximation techniques for multivariate functions. We demonstrate that such methods can efficiently be used in the high-dimensional input/output case under scarce data. Especially, we show that the vectorial kernel orthogonal greedy approximation (VKOGA) procedure with a data-adapted two-layer kernel yields excellent predictors for learning from 3D geometry voxel data via both morphological descriptors or principal component analysis.
  • Thumbnail Image
    ItemOpen Access
    A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs
    (2024) Hammer, Maria; Wenzel, Tizian; Santin, Gabriele; Meszaros-Beller, Laura; Little, Judith Paige; Haasdonk, Bernard; Schmitt, Syn
    The aim of this study was to design physics-preserving and precise surrogate models of the nonlinear elastic behaviour of an intervertebral disc (IVD). Based on artificial force-displacement data sets from detailed finite element (FE) disc models, we used greedy kernel and polynomial approximations of second, third and fourth order to train surrogate models for the scalar force-torque-potential. Doing so, the resulting models of the elastic IVD responses ensured the conservation of mechanical energy through their structure. At the same time, they were capable of predicting disc forces in a physiological range of motion and for the coupling of all six degrees of freedom of an intervertebral joint. The performance of all surrogate models for a subject-specific L4|5 disc geometry was evaluated both on training and test data obtained from uncoupled (one-dimensional), weakly coupled (two-dimensional), and random movement trajectories in the entire six-dimensional (6d) physiological displacement range, as well as on synthetic kinematic data. We observed highest precisions for the kernel surrogate followed by the fourth-order polynomial model. Both clearly outperformed the second-order polynomial model which is equivalent to the commonly used stiffness matrix in neuro-musculoskeletal simulations. Hence, the proposed model architectures have the potential to improve the accuracy and, therewith, validity of load predictions in neuro-musculoskeletal spine models.