Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
4 results
Search Results
Item Open Access Escherichia coli reporter strains allow for the in vivo evaluation of recombinant elongation factor protein (EF-P)(2024) Trachtmann, Natalia; Bikmullin, Aydar; Validov, Shamil; Sprenger, Georg A.Background: Elongation factor protein (EF-P) in bacteria helps ribosomes to incorporate contiguous proline residues (xPro) into proteins. In this way, EF-P rescues ribosomes from stalling at these xPro motifs. Whereas EF-P deficiency is lethal for some species, others show reduced virulence or generally lower growth rates, such as Escherichia coli (E. coli). EF-P needs to be post-translationally modified to gain full functionality. Methods: We constructed E. coli K-12 mutant strains with deletion of the serA gene leading to an auxotrophy for L-serine. Then, we engineered a 6xPro motif in the recombinant serA gene, which was then chromosomally inserted under its native promoter. Furthermore, mutant strains which were deleted for efp and/or epmA (encoding the EF-P modification protein EpmA) were engineered. Results: Δefp, ΔepmA, and Δefp/ΔepmA double mutants showed already significantly reduced growth rates in minimal media. ΔserA derivatives of these strains were complemented by the wt serA gene but not by 6xPro-serA. ΔserA mutants with intact efp were complemented by all serA-constructs. Chromosomal expression of the recombinant efp gene from E. coli or from the pathogen, Staphylococcus aureus (S. aureus), restored growth, even without epmA expression. Conclusions: We provide a novel synthetic reporter system for in vivo evaluation of EF-P deficiency. In addition, we demonstrated that both EF-P-E. coli and EF-P-S. aureus restored the growth of a 6xPro-serA: Δefp, ΔepmA strain, which is evidence that modification of EF-P might be dispensable for rescuing of ribosomes stalled during translation of proline repeats.Item Open Access Genetic engineering approaches for the fermentative production of phenylglycines(2020) Moosmann, David; Mokeev, Vladislav; Kulik, Andreas; Osipenkov, Natalie; Kocadinc, Susann; Ort-Winklbauer, Regina; Handel, Franziska; Hennrich, Oliver; Youn, Jung-Won; Sprenger, Georg A.; Mast, YvonneL-phenylglycine (L-Phg) is a rare non-proteinogenic amino acid, which only occurs in some natural compounds, such as the streptogramin antibiotics pristinamycin I and virginiamycin S or the bicyclic peptide antibiotic dityromycin. Industrially, more interesting than L-Phg is the enantiomeric D-Phg as it plays an important role in the fine chemical industry, where it is used as a precursor for the production of semisynthetic β-lactam antibiotics. Based on the natural L-Phg operon from Streptomyces pristinaespiralis and the stereo-inverting aminotransferase gene hpgAT from Pseudomonas putida, an artificial D-Phg operon was constructed. The natural L-Phg operon, as well as the artificial D-Phg operon, was heterologously expressed in different actinomycetal host strains, which led to the successful production of Phg. By rational genetic engineering of the optimal producer strains S. pristinaespiralis and Streptomyces lividans, Phg production could be improved significantly. Here, we report on the development of a synthetic biology-derived D-Phg pathway and the optimization of fermentative Phg production in actinomycetes by genetic engineering approaches. Our data illustrate a promising alternative for the production of Phgs.Item Open Access Protein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase(2022) Jayaraman, Kumaresan; Trachtmann, Natalia; Sprenger, Georg A.; Gohlke, HolgerThe shikimate pathway delivers aromatic amino acids (AAAs) in prokaryotes, fungi, and plants and is highly utilized in the industrial synthesis of bioactive compounds. Carbon flow into this pathway is controlled by the initial enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS). AAAs produced further downstream, phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), regulate DAHPS by feedback inhibition. Corynebacterium glutamicum, the industrial workhorse for amino acid production, has two isoenzymes of DAHPS, AroF (Tyr sensitive) and AroG (Phe and Tyr sensitive). Here, we introduce feedback resistance against Tyr in the class I DAHPS AroF (AroFcg). We pursued a consensus approach by drawing on structural modeling, sequence and structural comparisons, knowledge of feedback-resistant variants in E. coli homologs, and computed folding free energy changes. Two types of variants were predicted: Those where substitutions putatively either destabilize the inhibitor binding site or directly interfere with inhibitor binding. The recombinant variants were purified and assessed in enzyme activity assays in the presence or absence of Tyr. Of eight AroFcg variants, two yielded > 80% (E154N) and > 50% (P155L) residual activity at 5 mM Tyr and showed > 50% specific activity of the wt AroFcg in the absence of Tyr. Evaluation of two and four further variants at positions 154 and 155 yielded E154S, completely resistant to 5 mM Tyr, and P155I, which behaves similarly to P155L. Hence, feedback-resistant variants were found that are unlikely to evolve by point mutations from the parental gene and, thus, would be missed by classical strain engineering.Item Open Access Metabolic control analysis of L-tryptophan producing Escherichia coli applying targeted perturbation with shikimate(2021) Schoppel, Kristin; Trachtmann, Natalia; Mittermeier, Fabian; Sprenger, Georg A.; Weuster-Botz, DirkL-tryptophan production from glycerol with Escherichia coli was analysed by perturbation studies and metabolic control analysis. The insertion of a non-natural shikimate transporter into the genome of an Escherichia coli L-tryptophan production strain enabled targeted perturbation within the product pathway with shikimate during parallelised short-term perturbation experiments with cells withdrawn from a 15 L fed-batch production process. Expression of the shikimate/H+-symporter gene (shiA) from Corynebacterium glutamicum did not alter process performance within the estimation error. Metabolic analyses and subsequent extensive data evaluation were performed based on the data of the parallel analysis reactors and the production process. Extracellular rates and intracellular metabolite concentrations displayed evident deflections in cell metabolism and particularly in chorismate biosynthesis due to the perturbations with shikimate. Intracellular flux distributions were estimated using a thermodynamics-based flux analysis method, which integrates thermodynamic constraints and intracellular metabolite concentrations to restrain the solution space. Feasible flux distributions, Gibbs reaction energies and concentration ranges were computed simultaneously for the genome-wide metabolic model, with minimum bias in relation to the direction of metabolic reactions. Metabolic control analysis was applied to estimate elasticities and flux control coefficients, predicting controlling sites for L-tryptophan biosynthesis. The addition of shikimate led to enhanced deviations in chorismate biosynthesis, revealing a so far not observed control of 3-dehydroquinate synthase on L-tryptophan formation. The relative expression of the identified target genes was analysed with RT-qPCR. Transcriptome analysis revealed disparities in gene expression and the localisation of target genes to further improve the microbial L-tryptophan producer by metabolic engineering.