Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    ItemOpen Access
    DNS of multiple bubble growth and droplet formation in superheated liquids
    (2018) Loureiro, Daniel Dias; Reutzsch, Jonathan; Dietzel, Dirk; Kronenburg, Andreas; Weigand, Bernhard; Vogiatzaki, Konstantina
    Flash boiling can occur in rocket thrusters used for orbital manoeuvring of spacecraft as the cryogenic propellants are injected into the vacuum of space. For reliable ignition, a precise control of the atomization process is required as atomization and mixing of fuel and oxidizer are crucial for the subsequent combustion process. This work focuses on the microscopic process leading to the primary break-up of a liquid oxygen jet, caused by homogeneous nucleation and growth of vapour bubbles in superheated liquid. Although large levels of superheat can be achieved, sub-critical injection conditions ensure distinct gas and liquid phases with a large density ratio. Direct numerical simulations (DNS) are performed using the multiphase solver FS3D. The code solves the incompressible Navier-Stokes equations using the Volume of Fluid (VOF) method and PLIC reconstruction for the phase interface treatment. The interfaces are tracked as multiple bubbles grow, deform and coalesce, leading to the formation of a spray. The evaporation rate at the interface and approximate vapour properties are based on pre-computed solutions resolving the thermal boundary layer surrounding isolated bubbles, while liquid inertia and surface tension effects are expected to play a major role in the final spray characteristics which can only be captured by DNS. Simulations with regular arrays of bubbles demonstrate how the initial bubble spacing and thermodynamic conditions lead to distinct spray characteristics and droplet size distributions.
  • Thumbnail Image
    ItemOpen Access
    The effect of patterned micro-structure on the apparent contact angle and three-dimensional contact line
    (2021) Foltyn, Patrick; Restle, Ferdinand; Wissmann, Markus; Hengsbach, Stefan; Weigand, Bernhard
    The measurement of the apparent contact angle on structured surfaces is much more difficult to obtain than on smooth surfaces because the pinning of liquid to the roughness has a tremendous influence on the three phase contact line. The results presented here clearly show an apparent contact angle variation along the three phase contact line. Accordingly, not only one value for the apparent contact angle can be provided, but a contact angle distribution or an interval has to be given to characterize the wetting behavior. For measuring the apparent contact angle distribution on regularly structured surfaces, namely micrometric pillars and grooves, an experimental approach is presented and the results are provided. A short introduction into the manufacturing process of such structured surfaces, which is a combination of Direct LASER Writing (DLW) lithography, electroforming and hot embossing shows the high quality standard of the used surfaces.
  • Thumbnail Image
    ItemOpen Access
    An analytical study on the mechanism of grouping of droplets
    (2022) Vaikuntanathan, Visakh; Ibach, Matthias; Arad, Alumah; Chu, Xu; Katoshevski, David; Greenberg, Jerrold Barry; Weigand, Bernhard
    The condition for the formation of droplet groups in liquid sprays is poorly understood. This study looks at a simplified model system consisting of two iso-propanol droplets of equal diameter, Dd0, in tandem, separated initially by a center-to-center distance, a20, and moving in the direction of gravity with an initial velocity, Vd0>Vt, where Vt is the terminal velocity of an isolated droplet from Stokes flow analysis. A theoretical analysis based on Stokes flow around this double-droplet system is presented, including an inertial correction factor in terms of drag coefficient to account for large Reynolds numbers (≫1). From this analysis, it is observed that the drag force experienced by the leading droplet is higher than that experienced by the trailing droplet. The temporal evolutions of the velocity, Vd(t), of the droplets, as well as their separation distance, a2(t), are presented, and the time to at which the droplets come in contact with each other and their approach velocity at this time, ΔVd0, are calculated. The effects of the droplet diameter, Dd0, the initial droplet velocity, Vd0, and the initial separation, a20 on to and ΔVd0 are reported. The agreement between the theoretical predictions and experimental data in the literature is good.
  • Thumbnail Image
    ItemOpen Access
    Evaporation modeling of water droplets in a transonic compressor cascade under fogging conditions
    (2020) Seck, Adrian; Geist, Silvio; Harbeck, Janneck; Weigand, Bernhard; Joos, Franz
    High-fogging is widely used to rapidly increase the power outputs of stationary gas turbines. Therefore, water droplets are injected into the inflow air, and a considerable number enter the compressor. Within this paper, the primary process of droplet evaporation is investigated closely. A short discussion about the influential parameters ascribes a major significance to the slip velocity between ambient gas flow and droplets. Hence, experimental results from a transonic compressor cascade are shown to evaluate the conditions in real high-fogging applications. The measured parameter range is used for direct numerical simulations to extract evaporation rates depending on inflow conditions and relative humidity of the air flow. Finally, an applicable correlation for the Sherwood number in the form of Sh(Re1/2Sc1/3) is suggested.
  • Thumbnail Image
    ItemOpen Access
    Characterisation of the transient mixing behaviour of evaporating near-critical droplets
    (2023) Steinhausen, Christoph; Gerber, Valerie; Stierle, Rolf; Preusche, Andreas; Dreizler, Andreas; Gross, Joachim; Weigand, Bernhard; Lamanna, Grazia
    With technical progress, combustion pressures have been increased over the years, frequently exceeding the critical pressure of the injected fluids. For conditions beyond the critical point of the injected fluids, the fundamental physics of mixing and evaporation processes is not yet fully understood. In particular, quantitative data for validation of numerical simulations and analytical models remain sparse. In previous works, transient speed of sound studies applying laser-induced thermal acoustics (LITA) have been conducted to investigate the mixing behaviour in the wake of an evaporating droplet injected into a supercritical atmosphere. LITA is a seedless, non-intrusive measurement technique capable of direct speed of sound measurements within these mixing processes. The used setup employs a high-repetition-rate excitation laser source and, therefore, allows the acquisition of time-resolved speed of sound data. For the visualisation of the evaporation process, measurements are accompanied by direct, high-speed shadowgraphy. In the present work, the measured speed of sound data are evaluated by applying an advection-controlled mixing assumption to estimate both the local mole fraction and mixing temperature. For this purpose, planar spontaneous Raman scattering results measured under the same operating conditions are evaluated using an advection-controlled mixing assumption with the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state. Successively, the resulting concentration–temperature field is used for the estimation of local mixture parameters from the detected speed of sound data. Moreover, models using the PC-SAFT equation of state and the NIST database for the computation of the speed of sound are compared. The investigations indicate a classical two-phase evaporation process with evaporative cooling of the droplet. The subsequent mixing of fluid vapour and ambient gas also remains subcritical in the direct vicinity of the droplet.
  • Thumbnail Image
    ItemOpen Access
    On the potential and challenges of laser-induced thermal acoustics for experimental investigation of macroscopic fluid phenomena
    (2020) Steinhausen, Christoph; Gerber, Valerie; Preusche, Andreas; Weigand, Bernhard; Dreizler, Andreas; Lamanna, Grazia
    Mixing and evaporation processes play an important role in fluid injection and disintegration. Laser-induced thermal acoustics (LITA) also known as laser-induced grating spectroscopy (LIGS) is a promising four-wave mixing technique capable to acquire speed of sound and transport properties of fluids. Since the signal intensity scales with pressure, LITA is effective in high-pressure environments. By analysing the frequency of LITA signals using a direct Fourier analysis, speed of sound data can be directly determined using only geometrical parameters of the optical arrangement no equation of state or additional modelling is needed at this point. Furthermore, transport properties, like acoustic damping rate and thermal diffusivity, are acquired using an analytical expression for LITA signals with finite beam sizes. By combining both evaluations in one LITA signal, we can estimate mixing parameters, such as the mixture temperature and composition, using suitable models for speed of sound and the acquired transport properties. Finally, direct measurements of the acoustic damping rate can provide important insights on the physics of supercritical fluid behaviour.
  • Thumbnail Image
    ItemOpen Access
    Transport of turbulence across permeable interface in a turbulent channel flow : interface-resolved direct numerical simulation
    (2020) Chu, Xu; Wang, Wenkang; Yang, Guang; Terzis, Alexandros; Helmig, Rainer; Weigand, Bernhard
    Turbulence transportation across permeable interfaces is investigated using direct numerical simulation, and the connection between the turbulent surface flow and the pore flow is explored. The porous media domain is constructed with an in-line arranged circular cylinder array. The effects of Reynolds number and porosity are also investigated by comparing cases with two Reynolds numbers (Re≈3000,6000) and two porosities (φ=0.5,0.8). It was found that the change of porosity leads to the variation of flow motions near the interface region, which further affect turbulence transportation below the interface. The turbulent kinetic energy (TKE) budget shows that turbulent diffusion and pressure transportation work as energy sink and source alternatively, which suggests a possible route for turbulence transferring into porous region. Further analysis on the spectral TKE budget reveals the role of modes of different wavelengths. A major finding is that mean convection not only affects the distribution of TKE in spatial space, but also in scale space. The permeability of the wall also have an major impact on the occurrence ratio between blow and suction events as well as their corresponding flow structures, which can be related to the change of the Kármán constant of the mean velocity profile.
  • Thumbnail Image
    ItemOpen Access
    Swirl flow stability : thermodynamic analysis and experiments
    (2024) Maršík, František; Trávníček, Zdeněk; Weigand, Bernhard; Seibold, Florian; Antošová, Zuzana
    The current paper presents a theoretical analysis of swirl flow stability, both inside a tube (vortex tube) and in a free annular swirl flow. The starting concept is the study of the evolution of velocity and temperature fluctuations. Methods of non-equilibrium thermodynamics are used to describe the magnitude of fluctuations and their properties. The important role of the total enthalpy follows from a variational analysis. Moreover, the thermodynamic criterion of the stability is formulated using the total enthalpy, and compared with experiments, numerical results and classical Rayleigh theory support its applicability. It was shown that the solid body vortex is at the margin of stability, which is experimentally observed. Analogously, the potential vortex is by the thermodynamic criterion stable; however, by the Rayleigh criteria it is on the onset of stability. The classical Taylor experiment of flow between two rotating cylinders is analysed from the point of view of this criterion. These results are underlined by swirl tube experiments at the Institute of Aerospace Thermodynamics at Stuttgart University and the annular nozzle experiments performed in the Institute of Thermomechanics CAS in Prague. Both independent experiments confirm the transformation of the initial annular vortex into a stable potential-type vortex. The results of this theory can also be used to explain the exceptional stability of tropical cyclones.