Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
202 results
Search Results
Item Open Access Quantitative analysis of the sensitivity of UHF sensor positions on a 420 kV power transformer based on electromagnetic simulation(2019) Beura, Chandra Prakash; Beltle, Michael; Tenbohlen, Stefan; Siegel, MartinWith an increasing interest in ultra-high frequency (UHF) partial discharge (PD) measurements for the continuous monitoring of power transformers, it is necessary to know where to place the UHF sensors on the tank wall. Placing a sensor in an area with many obstructions may lead to a decrease in sensitivity to the UHF signals. In this contribution, a previously validated simulation model of a three-phase 300 MVA, 420 kV power transformer is used to perform a sensitivity analysis to determine the most sensitive sensor positions on the tank wall when PD activity occurs inside the windings. A matrix of UHF sensors located on the transformer tank is used to perform the sensitivity analysis. Some of the windings are designed as layer windings, thus preventing the UHF signals from traveling through them and creating a realistic situation with very indirect propagation from source to sensor. Based on these findings, sensor configurations optimized for UHF signal sensitivity, which is also required for PD source localization, are recommended for localization purposes. Additionally, the propagation and attenuation of the UHF signals inside the windings and the tank are discussed in both oil and air.Item Open Access iWindow - Intelligentes Maschinenfenster(Düsseldorf : VDI Verlag, 2018) Sommer, Philipp; Verl, Alexander; Kiefer, Manuel; Rahäuser, Raphael; Müller, Sebastian; Brühl, Jens; Gras, Michael; Berckmann, Eva; Stautner, Marc; Schäfer, D.; Schotte, Wolfgang; Do-Khac, Dennis; Neyrinck, Adrian; Eger, Ulrich; Sommer, PhilippDas Verbundforschungsprojekt iWindow: Intelligentes Maschinenfenster beschäftigte sich mit der visuellen Unterstützung von Maschinenbedienern an Werkzeugmaschinen. Diese konnten bisher nur auf wenige bis keine Systeme, die sie bei ihren täglichen Aufgaben direkt an der Werkzeugmaschine unterstützen, zurückgreifen. Das Forschungsprojekt verbindet reale und virtuelle Welt in der Werkzeugmaschine durch Technologien wie Virtual und Augmented Reality, digitaler Zwilling, Simulation und Mehrwertdienste. Durch Nutzung jeweils für die aktuelle Arbeitssituation passender Dienste, werden Mitarbeiter befähigt, sich an die steigende Individualisierung der Produkte und die flexiblere Produktion anzupassen. Kunden und Geschäftspartner werden durch die Möglichkeit eigene mehrwertgenerierende Dienste zu entwickeln und anderen Anwendern zur Verfügung zu stellen in den Wertschöpfungsprozess eingebunden. Diese Publikation beleuchtet die im Rahmen des Forschungsprojekts erarbeiteten Ergebnisse hinsichtlich für ein intelligentes Maschinenfenster benötigter Technologien und Entwicklungen.Item Open Access A Bayesian network approach to assess and predict software quality using activity-based quality models(2009) Wagner, StefanAssessing and predicting the complex concept of software quality is still challenging in practice as well as research. Activity-based quality models break down this complex concept into more concrete definitions, more precisely facts about the system, process and environment and their impact on activities performed on and with the system. However, these models lack an operationalisation that allows to use them in assessment and prediction of quality. Bayesian Networks (BN) have been shown to be a viable means for assessment and prediction incorporating variables with uncertainty. This paper describes how activity-based quality models can be used to derive BN models for quality assessment and prediction. The proposed approach is demonstrated in a proof of concept using publicly available data.Item Open Access Sustainability assessment of fuel cell buses in public transport(2018) Lozanovski, Aleksandar; Whitehouse, Nicole; Ko, Nathanael; Whitehouse, SimonHydrogen fuel cell (H2FC) buses operating in every day public transport services around Europe are assessed for their sustainability against environmental, economic and social criteria. As part of this assessment the buses are evaluated against diesel buses both in terms of sustainability and in terms of meeting real world requirements with respect to operational performance. The study concludes that H2FC buses meet operability and performance criteria and are sustainable environmentally when ‘green’ hydrogen is used. The economic sustainability of the buses, in terms of affordability, achieves parity with their fossil fuel equivalent by 2030 when the indirect costs to human health and climate change are included. Societal acceptance by those who worked with and used the buses supports the positive findings of earlier studies, although satisfactory operability and performance are shown to be essential to positive attitudes. Influential policy makers expressed positive sentiments only if ‘green’ hydrogen is used and the affordability issues can be addressed. No “show-stopper” is identified that would prevent future generations from using H2FC buses in public transport on a broad scale due to damage to the environment or to other factors that impinge on quality of life.Item Open Access Efficient approach to compute melting properties fully from ab initio with application to Cu(2017) Zhu, Li-Fang; Grabowski, Blazej; Neugebauer, JörgApplying thermodynamic integration within an ab initio-based free-energy approach is a state-of-the-art method to calculate melting points of materials. However, the high computational cost and the reliance on a good reference system for calculating the liquid free energy have so far hindered a general application. To overcome these challenges, we propose the two-optimized references thermodynamic integration using Langevin dynamics (TOR-TILD) method in this work by extending the two-stage upsampled thermodynamic integration using Langevin dynamics (TU-TILD) method, which has been originally developed to obtain anharmonic free energies of solids, to the calculation of liquid free energies. The core idea of TOR-TILD is to fit two empirical potentials to the energies from density functional theory based molecular dynamics runs for the solid and the liquid phase and to use these potentials as reference systems for thermodynamic integration. Because the empirical potentials closely reproduce the ab initio system in the relevant part of the phase space the convergence of the thermodynamic integration is very rapid. Therefore, the proposed approach improves significantly the computational efficiency while preserving the required accuracy. As a test case, we apply TOR-TILD to fcc Cu computing not only the melting point but various other melting properties, such as the entropy and enthalpy of fusion and the volume change upon melting. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the local-density approximation (LDA) are used. Using both functionals gives a reliable ab initio confidence interval for the melting point, the enthalpy of fusion, and entropy of fusion.Item Open Access Empirical research plan: effects of sketching on program comprehension(2016) Baltes, Sebastian; Wagner, StefanSketching is an important means of communication in software engineering practice. Yet, there is little research investigating the use of sketches. We want to contribute a better understanding of sketching, in particular its use during program comprehension. We propose a controlled experiment to investigate the effectiveness and efficiency of program comprehension with the support of sketches as well as what sketches are used in what way.Item Open Access The RefLex scheme - annotation guidelines(Stuttgart : Universität Stuttgart, SFB, 2017) Riester, Arndt; Baumann, StefanThe purpose of the RefLex annotation scheme (Baumann and Riester 2012) is the two-dimensional analysis of textual or spoken corpus data with regard to referential information status (including coreference and bridging) as well as lexical information status (semantic relations). We provide some linguistic-philosophical background followed by detailed guidelines, which can be used in combination with various annotation tools.Item Open Access A comprehensive safety engineering approach for software-intensive systems based on STPA(2015) Abdulkhaleq, Asim; Wagner, Stefan; Leveson, NancyFormal verification and testing are complementary approaches which are used in the development process to verify the functional correctness of software. However, the correctness of software cannot ensure the safe operation of safety-critical software systems. The software must be verified against its safety requirements which are identified by safety analysis, to ensure that potential hazardous causes cannot occur. The complexity of software makes defining appropriate software safety requirements with traditional safety analysis techniques difficult. STPA (Systems-Theoretic Processes Analysis) is a unique safety analysis approach that has been developed to identify system hazards, including the software-related hazards. This paper presents a comprehensive safety engineering approach based on STPA, including software testing and model checking approaches for the purpose of developing safe software. The proposed approach can be embedded within a defined software engineering process or applied to existing software systems, allow software and safety engineers integrate the analysis of software risks with their verification. The application of the proposed approach is illustrated with an automotive software controller.Item Open Access IEA Wind Task 32: Wind Lidar : identifying and mitigating barriers to the adoption of wind lidar(2018) Clifton, Andrew; Clive, Peter; Gottschall, Julia; Schlipf, David; Simley, Eric; Simmons, Luke; Stein, Detlef; Trabucchi, Davide; Vasiljevic, Nikola; Würth, InesIEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.Item Open Access Functional role of lanthanides in enzymatic activity and transcriptional regulation of Pyrroloquinoline quinone-dependent alcohol dehydrogenases in Pseudomonas putida KT2440(2017) Wehrmann, Matthias; Billard, Patrick; Martin-Meriadec, Audrey; Zegeye, Asfaw; Klebensberger, JanoschThe oxidation of alcohols and aldehydes is crucial for detoxification and efficient catabolism of various volatile organic compounds (VOCs). Thus, many Gram-negative bacteria have evolved periplasmic oxidation systems based on pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) that are often functionally redundant. Here we report the first description and characterization of a lanthanide-dependent PQQ-ADH (PedH) in a nonmethylotrophic bacterium based on the use of purified enzymes from the soil-dwelling model organism Pseudomonas putida KT2440. PedH (PP_2679) exhibits enzyme activity on a range of substrates similar to that of its Ca2+-dependent counterpart PedE (PP_2674), including linear and aromatic primary and secondary alcohols, as well as aldehydes, but only in the presence of lanthanide ions, including La3+, Ce3+, Pr3+, Sm3+, or Nd3+. Reporter assays revealed that PedH not only has a catalytic function but is also involved in the transcriptional regulation of pedE and pedH, most likely acting as a sensory module. Notably, the underlying regulatory network is responsive to as little as 1 to 10 nM lanthanum, a concentration assumed to be of ecological relevance. The present study further demonstrates that the PQQ-dependent oxidation system is crucial for efficient growth with a variety of volatile alcohols. From these results, we conclude that functional redundancy and inverse regulation of PedE and PedH represent an adaptive strategy of P. putida KT2440 to optimize growth with volatile alcohols in response to the availability of different lanthanides.