Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
4 results
Search Results
Item Open Access Simulating asteroid impacts and meteor events by high-power lasers : from the laboratory to spaceborne missions(2023) Ferus, Martin; Knížek, Antonín; Cassone, Giuseppe; Rimmer, Paul B.; Changela, Hitesh; Chatzitheodoridis, Elias; Uwarova, Inna; Žabka, Ján; Kabáth, Petr; Saija, Franz; Saeidfirozeh, Homa; Lenža, Libor; Krůs, Miroslav; Petera, Lukáš; Nejdl, Lukáš; Kubelík, Petr; Křivková, Anna; Černý, David; Divoký, Martin; Pisařík, Michael; Kohout, Tomáš; Palamakumbure, Lakshika; Drtinová, Barbora; Hlouchová, Klára; Schmidt, Nikola; Martins, Zita; Yáñez, Jorge; Civiš, Svatopoluk; Pořízka, Pavel; Mocek, Tomáš; Petri, Jona; Klinkner, SabineMeteor plasmas and impact events are complex, dynamic natural phenomena. Simulating these processes in the laboratory is, however, a challenge. The technique of laser induced dielectric breakdown was first used for this purpose almost 50 years ago. Since then, laser-based experiments have helped to simulate high energy processes in the Tunguska and Chicxulub impact events, heavy bombardment on the early Earth, prebiotic chemical evolution, space weathering of celestial bodies and meteor plasma. This review summarizes the current level of knowledge and outlines possible paths of future development.Item Open Access Extension of the plasma radiation database PARADE for the analysis of meteor spectra(2021) Loehle, Stefan; Eberhart, Martin; Zander, Fabian; Meindl, Arne; Rudawska, Regina; Koschny, Detlef; Zender, Joe; Dantowitz, Ron; Jenniskens, PeterThe advancement in the acquisition of spectral data from meteors, as well as the capability to analyze meteoritic entries in ground testing facilities, requires the assessment of the performance of software tools for the simulation of spectra for different species. The Plasma Radiation Database, PARADE, is a line‐by‐line emission calculation tool. This article presents the extensions implemented for the simulation of meteor entries with the additional atomic species Na, K, Ti, V, Cr, Mn, Fe, Ca, Ni, Co, Mg, Si, and Li. These atoms are simulated and compared to ground testing spectra and to observed spectra from the CILBO observatory. The diatomic molecules AlO and TiO have now been added to the PARADE database. The molecule implementations have been compared to the results of a simple analytical program designed to approximate the vibrational band emission of diatomic molecules. AlO and TiO have been identified during the airborne observation campaigns of re‐entering man‐made objects WT1190F and CYGNUS OA6. Comparisons are provided showing reasonable agreement between observation and simulation.Item Open Access Detection, analysis, and removal of glitches from InSight's seismic data from Mars(2020) Scholz, John‐Robert; Widmer‐Schnidrig, Rudolf; Davis, Paul; Lognonné, Philippe; Pinot, Baptiste; Garcia, Raphaël F.; Hurst, Kenneth; Pou, Laurent; Nimmo, Francis; Barkaoui, Salma; de Raucourt, Sébastien; Knapmeyer‐Endrun, Brigitte; Knapmeyer, Martin; Orhand‐Mainsant, Guénolé; Compaire, Nicolas; Cuvier, Arthur; Beucler, Éric; Bonnin, Mickaël; Joshi, Rakshit; Sainton, Grégory; Stutzmann, Eléonore; Schimmel, Martin; Horleston, Anna; Böse, Maren; Ceylan, Savas; Clinton, John; Driel, Martin van; Kawamura, Taichi; Khan, Amir; Stähler, Simon C.; Giardini, Domenico; Charalambous, Constantinos; Stott, Alexander E.; Pike, William T.; Christensen, Ulrich R.; Banerdt, W. BruceThe instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short‐period seismic sensors is installed on the surface on Mars as part of NASA's InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one‐sided pulses often accompanied by high‐frequency spikes. These pulses, which we term “glitches”, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS‐internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS's raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars' internal structure should benefit from deglitched seismic data.Item Open Access Analysis of the technical biases of meteor video cameras used in the CILBO system(2017) Albin, Thomas; Koschny, Detlef; Molau, Sirko; Srama, Ralf; Poppe, BjörnIn this paper, we analyse the technical biases of two intensified video cameras, ICC7 and ICC9, of the double-station meteor camera system CILBO (Canary Island Long-Baseline Observatory). This is done to thoroughly understand the effects of the camera systems on the scientific data analysis. We expect a number of errors or biases that come from the system: instrumental errors, algorithmic errors and statistical errors. We analyse different observational properties, in particular the detected meteor magnitudes, apparent velocities, estimated goodness-of-fit of the astrometric measurements with respect to a great circle and the distortion of the camera. We find that, due to a loss of sensitivity towards the edges, the cameras detect only about 55 % of the meteors it could detect if it had a constant sensitivity. This detection efficiency is a function of the apparent meteor velocity. We analyse the optical distortion of the system and the "goodness-of-fit" of individual meteor position measurements relative to a fitted great circle. The astrometric error is dominated by uncertainties in the measurement of the meteor attributed to blooming, distortion of the meteor image and the development of a wake for some meteors. The distortion of the video images can be neglected. We compare the results of the two identical camera systems and find systematic differences. For example, the peak magnitude distribution for ICC9 is shifted by about 0.2–0.4 mag towards fainter magnitudes. This can be explained by the different pointing directions of the cameras. Since both cameras monitor the same volume in the atmosphere roughly between the two islands of Tenerife and La Palma, one camera (ICC7) points towards the west, the other one (ICC9) to the east. In particular, in the morning hours the apex source is close to the field-of-view of ICC9. Thus, these meteors appear slower, increasing the dwell time on a pixel. This is favourable for the detection of a meteor of a given magnitude.