Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
230 results
Search Results
Item Open Access ROSIE : RObust Sparse ensemble for outlIEr detection and gene selection in cancer omics data(2022) Jensch, Antje; Lopes, Marta B.; Vinga, Susana; Radde, NicoleThe extraction of novel information from omics data is a challenging task, in particular, since the number of features (e.g. genes) often far exceeds the number of samples. In such a setting, conventional parameter estimation leads to ill-posed optimization problems, and regularization may be required. In addition, outliers can largely impact classification accuracy. Here we introduce ROSIE, an ensemble classification approach, which combines three sparse and robust classification methods for outlier detection and feature selection and further performs a bootstrap-based validity check. Outliers of ROSIE are determined by the rank product test using outlier rankings of all three methods, and important features are selected as features commonly selected by all methods. We apply ROSIE to RNA-Seq data from The Cancer Genome Atlas (TCGA) to classify observations into Triple-Negative Breast Cancer (TNBC) and non-TNBC tissue samples. The pre-processed dataset consists of 16,600 genes and more than 1,000 samples. We demonstrate that ROSIE selects important features and outliers in a robust way. Identified outliers are concordant with the distribution of the commonly selected genes by the three methods, and results are in line with other independent studies. Furthermore, we discuss the association of some of the selected genes with the TNBC subtype in other investigations. In summary, ROSIE constitutes a robust and sparse procedure to identify outliers and important genes through binary classification. Our approach is ad hoc applicable to other datasets, fulfilling the overall goal of simultaneously identifying outliers and candidate disease biomarkers to the targeted in therapy research and personalized medicine frameworks.Item Open Access Precision 3D‐printed cell scaffolds mimicking native tissue composition and mechanics(2020) Erben, Amelie; Hörning, Marcel; Hartmann, Bastian; Becke, Tanja; Eisler, Stephan A.; Southan, Alexander; Cranz, Séverine; Hayden, Oliver; Kneidinger, Nikolaus; Königshoff, Melanie; Lindner, Michael; Tovar, Günter E. M.; Burgstaller, Gerald; Clausen‐Schaumann, Hauke; Sudhop, Stefanie; Heymann, MichaelCellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell‐ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell‐ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two‐photon stereolithography is adopted to print up to mm‐sized high‐precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein‐based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two‐pass printing or post‐print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7‐300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D‐lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single‐cell and tissue dynamics in response to defined mechanical and bio‐molecular cues and is ultimately scalable to full organs.Item Open Access The Bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity(2022) Zhang, Hongli; Perez-Garcia, Pablo; Dierkes, Robert F.; Applegate, Violetta; Schumacher, Julia; Chibani, Cynthia Maria; Sternagel, Stefanie; Preuss, Lena; Weigert, Sebastian; Schmeisser, Christel; Danso, Dominik; Pleiss, Juergen; Almeida, Alexandre; Höcker, Birte; Hallam, Steven J.; Schmitz, Ruth A.; Smits, Sander H. J.; Chow, Jennifer; Streit, Wolfgang R.Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil® DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30°C from a 7 mg PET foil platelet in a 200 μl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30ΔPorC) was solved at 2.1 Å and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.Item Open Access Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis(2021) Hermann, Maria; Teleki, Attila; Weitz, Sandra; Niess, Alexander; Freund, Andreas; Bengelsdorf, Frank Robert; Dürre, Peter; Takors, RalfClostridium ljungdahlii (C. ljungdahlii, CLJU) is natively endowed producing acetic acid, 2,3-butandiol, and ethanol consuming gas mixtures of CO2, CO, and H2 (syngas). Here, we present the syngas-based isobutanol formation using C. ljungdahlii harboring the recombinant amplification of the “Ehrlich” pathway that converts intracellular KIV to isobutanol. Autotrophic isobutanol production was studied analyzing two different strains in 3-L gassed and stirred bioreactors. Physiological characterization was thoroughly applied together with metabolic profiling and flux balance analysis. Thereof, KIV and pyruvate supply were identified as key “bottlenecking” precursors limiting preliminary isobutanol formation in CLJU[KAIA] to 0.02 g L-1. Additional blocking of valine synthesis in CLJU[KAIA]:ilvE increased isobutanol production by factor 6.5 finally reaching 0.13 g L-1. Future metabolic engineering should focus on debottlenecking NADPH availability, whereas NADH supply is already equilibrated in the current generation of strains.Item Open Access Anti-adhesive surfaces inspired by bee mandible surfaces(2023) Saccardi, Leonie; Schiebl, Jonas; Balluff, Franz; Christ, Ulrich; Gorb, Stanislav N.; Kovalev, Alexander; Schwarz, OliverPropolis, a naturally sticky substance used by bees to secure their hives and protect the colony from pathogens, presents a fascinating challenge. Despite its adhesive nature, honeybees adeptly handle propolis with their mandibles. Previous research has shown a combination of an anti-adhesive fluid layer and scale-like microstructures on the inner surface of bee mandibles. Our aim was to deepen our understanding of how surface energy and microstructure influence the reduction in adhesion for challenging substances like propolis. To achieve this, we devised surfaces inspired by the intricate microstructure of bee mandibles, employing diverse techniques including roughening steel surfaces, creating lacquer structures using Bénard cells, and moulding resin surfaces with hexagonal patterns. These approaches generated patterns that mimicked the bee mandible structure to varying degrees. Subsequently, we assessed the adhesion of propolis on these bioinspired structured substrates. Our findings revealed that on rough steel and resin surfaces structured with hexagonal dimples, propolis adhesion was significantly reduced by over 40% compared to unstructured control surfaces. However, in the case of the lacquer surface patterned with Bénard cells, we did not observe a significant reduction in adhesion.Item Open Access Transcriptional CDK inhibitors CYC065 and THZ1 induce apoptosis in glioma stem cells derived from recurrent GBM(2021) Juric, Viktorija; Düssmann, Heiko; Lamfers, Martine L. M.; Prehn, Jochen H. M.; Rehm, Markus; Murphy, Brona M.Glioma stem cells (GSCs) are tumour initiating cells which contribute to treatment resistance, temozolomide (TMZ) chemotherapy and radiotherapy, in glioblastoma (GBM), the most aggressive adult brain tumour. A major contributor to the uncontrolled tumour cell proliferation in GBM is the hyper activation of cyclin-dependent kinases (CDKs). Due to resistance to standard of care, GBMs relapse in almost all patients. Targeting GSCs using transcriptional CDK inhibitors, CYC065 and THZ1 is a potential novel treatment to prevent relapse of the tumour. TCGA-GBM data analysis has shown that the GSC markers, CD133 and CD44 were significantly upregulated in GBM patient tumours compared to non-tumour tissue. CD133 and CD44 stem cell markers were also expressed in gliomaspheres derived from recurrent GBM tumours. Light Sheet Florescence Microscopy (LSFM) further revealed heterogeneous expression of these GSC markers in gliomaspheres. Gliomaspheres from recurrent tumours were highly sensitive to transcriptional CDK inhibitors, CYC065 and THZ1 and underwent apoptosis while being resistant to TMZ. Apoptotic cell death in GSC subpopulations and non-stem tumour cells resulted in sphere disruption. Collectively, our study highlights the potential of these novel CKIs to induce cell death in GSCs from recurrent tumours, warranting further clinical investigation.Item Open Access Nano-in-micro-particles consisting of PLGA nanoparticles embedded in chitosan microparticles via spray-drying enhances their uptake in the olfactory mucosa(2021) Spindler, Lena Marie; Feuerhake, Andreas; Ladel, Simone; Günday, Cemre; Flamm, Johannes; Günday-Türeli, Nazende; Türeli, Emre; Tovar, Günter E. M.; Schindowski, Katharina; Gruber-Traub, CarmenIntranasal delivery has gained prominence since 1990, when the olfactory mucosa was recognized as the window to the brain and the central nervous system (CNS); this has enabled the direct site specific targeting of neurological diseases for the first time. Intranasal delivery is a promising route because general limitations, such as the blood-brain barrier (BBB) are circumvented. In the treatment of multiple sclerosis (MS) or Alzheimer’s disease, for example, future treatment prospects include specialized particles as delivery vehicles. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are well known as promising delivery systems, especially in the area of nose-to-brain (N2B) delivery. Chitosan is also broadly known as a functional additive due to its ability to open tight junctions. In this study, we produced PLGA nanoparticles of different sizes and revealed for the first time their size-time-dependent uptake mechanism into the lamina propria of porcine olfactory mucosa. The intracellular uptake was observed for 80 and 175 nm within only 5 min after application to the epithelium. After 15 min, even 520 nm particles were detected, associated with nuclei. Especially the presence of only 520 nm particles in neuronal fibers is remarkable, implying transcellular and intracellular transport via the olfactory or the trigeminal nerve to the brain and the CNS. Additionally, we developed successfully specialized Nano-in-Micro particles (NiMPs) for the first time via spray drying, consisting of PLGA nanoparticles embedded into chitosan microparticles, characterized by high encapsulation efficiencies up to 51%, reproducible and uniform size distribution, as well as smooth surface. Application of NiMPs accelerated the uptake compared to purely applied PLGA nanoparticles. NiMPs were spread over the whole transverse section of the olfactory mucosa within 15 min. Faster uptake is attributed to additional paracellular transport, which was examined via tight-junction-opening. Furthermore, a separate chitosan penetration gradient of ∼150 µm caused by dissociation from PLGA nanoparticles was observed within 15 min in the lamina propria, which was demonstrated to be proportional to an immunoreactivity gradient of CD14. Due to the beneficial properties of the utilized chitosan-derivative, regarding molecular weight (150-300 kDa), degree of deacetylation (80%), and particle size (0.1-10 µm) we concluded that M2-macrophages herein initiated an anti-inflammatory reaction, which seems to already take place within 15 min following chitosan particle application. In conclusion, we demonstrated the possibility for PLGA nanoparticles, as well as for chitosan NiMPs, to take all three prominent intranasal delivery pathways to the brain and the CNS; namely transcellular, intracellular via neuronal cells, and paracellular transport.Item Open Access Light-addressable actuator-sensor platform for monitoring and manipulation of pH gradients in microfluidics : a case study with the enzyme penicillinase(2021) Welden, Rene; Jablonski, Melanie; Wege, Christina; Keusgen, Michael; Wagner, Patrick Hermann; Wagner, Torsten; Schöning, Michael J.The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte’s pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS.Item Open Access Patterns of autologous and nonautologous interactions between core nuclear egress complex (NEC) proteins of α-, β- and γ-herpesviruses(2020) Häge, Sigrun; Sonntag, Eric; Borst, Eva Maria; Tannig, Pierre; Seyler, Lisa; Bäuerle, Tobias; Bailer, Susanne M.; Lee, Chung-Pei; Müller, Regina; Wangen, Christina; Milbradt, Jens; Marschall, ManfredNuclear egress is a regulated process shared by α-, β- and γ-herpesviruses. The core nuclear egress complex (NEC) is composed of the membrane-anchored protein homologs of human cytomegalovirus (HCMV) pUL50, murine cytomegalovirus (MCMV) pM50, Epstein-Barr virus (EBV) BFRF1 or varicella zoster virus (VZV) Orf24, which interact with the autologous NEC partners pUL53, pM53, BFLF2 or Orf27, respectively. Their recruitment of additional proteins leads to the assembly of a multicomponent NEC, coordinately regulating viral nucleocytoplasmic capsid egress. Here, the functionality of VZV, HCMV, MCMV and EBV core NECs was investigated by coimmunoprecipitation and confocal imaging analyses. Furthermore, a recombinant MCMV, harboring a replacement of ORF M50 by UL50, was analyzed both in vitro and in vivo. In essence, core NEC interactions were strictly limited to autologous NEC pairs and only included one measurable nonautologous interaction between the homologs of HCMV and MCMV. A comparative analysis of MCMV-WT versus MCMV-UL50-infected murine fibroblasts revealed almost identical phenotypes on the levels of protein and genomic replication kinetics. In infected BALB/c mice, virus spread to lung and other organs was found comparable between these viruses, thus stating functional complementarity. In conclusion, our study underlines that herpesviral core NEC proteins are functionally conserved regarding complementarity of core NEC interactions, which were found either virus-specific or restricted within subfamilies.Item Open Access Modeled 3D-structures of proteobacterial transglycosylases from glycoside hydrolase family 17 give insight in ligand interactions explaining differences in transglycosylation products(2021) Linares-Pastén, Javier A.; Jonsdottir, Lilja Björk; Hreggvidsson, Gudmundur O.; Fridjonsson, Olafur H.; Watzlawick, Hildegard; Karlsson, Eva NordbergThe structures of glycoside hydrolase family 17 (GH17) catalytic modules from modular proteins in the ndvB loci in Pseudomonas aeruginosa (Glt1), P. putida (Glt3) and Bradyrhizobium diazoefficiens (previously B. japonicum) (Glt20) were modeled to shed light on reported differences between these homologous transglycosylases concerning substrate size, preferred cleavage site (from reducing end (Glt20: DP2 product) or non-reducing end (Glt1, Glt3: DP4 products)), branching (Glt20) and linkage formed (1,3-linkage in Glt1, Glt3 and 1,6-linkage in Glt20). Hybrid models were built and stability of the resulting TIM-barrel structures was supported by molecular dynamics simulations. Catalytic amino acids were identified by superimposition of GH17 structures, and function was verified by mutagenesis using Glt20 as template (i.e., E120 and E209). Ligand docking revealed six putative subsites (-4, -3, -2, -1, +1 and +2), and the conserved interacting residues suggest substrate binding in the same orientation in all three transglycosylases, despite release of the donor oligosaccharide product from either the reducing (Glt20) or non-reducing end (Glt1, Gl3). Subsites +1 and +2 are most conserved and the difference in release is likely due to changes in loop structures, leading to loss of hydrogen bonds in Glt20. Substrate docking in Glt20 indicate that presence of covalently bound donor in glycone subsites -4 to -1 creates space to accommodate acceptor oligosaccharide in alternative subsites in the catalytic cleft, promoting a branching point and formation of a 1,6-linkage. The minimum donor size of DP5, can be explained assuming preferred binding of DP4 substrates in subsite -4 to -1, preventing catalysis.