Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 12
  • Thumbnail Image
    ItemOpen Access
    Spatio-temporal and immersive visual analytics for advanced manufacturing
    (2019) Herr, Dominik; Ertl, Thomas (Prof. Dr.)
    The increasing amount of digitally available information in the manufacturing domain is accompanied by a demand to use these data to increase the efficiency of a product’s overall design, production, and maintenance steps. This idea, often understood as a part of Industry 4.0, requires the integration of information technologies into traditional manufacturing craftsmanship. Despite an increasing amount of automation in the production domain, human creativity is still essential when designing new products. Further, the cognitive ability of skilled workers to comprehend complex situations and solve issues by adapting solutions of similar problems makes them indispensable. Nowadays, customers demand highly customizable products. Therefore, modern factories need to be highly flexible regarding the lot size and adaptable regarding the produced goods, resulting in increasingly complex processes. One of the major challenges in the manufacturing domain is to optimize the interplay of human expert knowledge and experience with data analysis algorithms. Human experts can quickly comprehend previously unknown patterns and transfer their knowledge and gained experience to solve new issues. Contrarily, data analysis algorithms can process tasks very efficiently at the cost of limited adaptability to handle new situations. Further, they usually lack a sense of semantics, which leads to a need to combine them with human world knowledge to assess the meaningfulness of such algorithms’ results. The concept of Visual Analytics combines the advantages of the human’s cognitive abilities and the processing power of computers. The data are visualized, allowing the users to understand and manipulate them interactively, while algorithms process the data according to the users’ interaction. In the manufacturing domain, a common way to describe the different states of a product from the idea throughout the realization until the product is disposed is the product lifecycle. This thesis presents approaches along the first three phases of the lifecycle: design, planning, and production. A challenge that all of the phases face is that it is necessary to be able to find, understand, and assess relations, for example between concepts, production line layouts, or events reported in a production line. As all phases of the product lifecycle cover broad topics, this thesis focuses on supporting experts in understanding and comparing relations between important aspects of the respective phases, such as concept relationships in the patent domain, as well as production line layouts, or relations of events reported in a production line. During the design phase, it is important to understand the relations of concepts, such as key concepts in patents. Hence, this thesis presents approaches that help domain experts to explore the relationship of such concepts visually. It first focuses on the support of analyzing patent relationships and then extends the presented approach to convey relations about arbitrary concepts, such as authors in scientific literature or keywords on websites. During the planning phase, it is important to discover and compare different possibilities to arrange production line components and additional stashes. In this field, the digitally available data is often insufficient to propose optimal layouts. Therefore, this thesis proposes approaches that help planning experts to design new layouts and optimize positions of machine tools and other components in existing production lines. In the production phase, supporting domain experts in understanding recurring issues and their relation is important to improve the overall efficiency of a production line. This thesis presents visual analytics approaches to help domain experts to understand the relation between events reported by machine tools and comprehend recurring error patterns that may indicate systematic issues during production. Then, this thesis combines the insights and lessons learned from the previous approaches to propose a system that combines augmented reality with visual analysis to allow the monitoring and a situated analysis of machine events directly at the production line. The presented approach primarily focuses on the support of operators on the shop floor. At last, this thesis discusses a possible combination of the product lifecycle with knowledge generating models to communicate insights between the phases, e.g., to prevent issues that are caused from problematic design decisions in earlier phases. In summary, this thesis makes several fundamental contributions to advancing visual analytics techniques in the manufacturing domain by devising new interactive analysis techniques for concept and event relations and by combining them with augmented reality approaches enabling an immersive analysis to improve event handling during production.
  • Thumbnail Image
    ItemOpen Access
    Methode zur modellierungsbasierten, präventiven Qualitätssicherung im Material Extrusion Verfahren
    (2020) Bähr, Friedrich; Westkämper, Engelbert (Prof. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult.)
    Additive Fertigungstechnologien etablieren sich zunehmend für industrielle Anwendungen. Unbeherrschte Prozesse sowie mangelhafte Bauteilqualität bremsen jedoch die Verbreitung in der Serienanwendung. Die Fertigung von Qualität und Maßnahmen zu deren Absicherung im Sinne der Reproduzierbarkeit gestalten sich als besonders wichtig und herausfordernd. Mit Blick auf Losgröße eins reichen dem Prozess nachgelagerte Kontrollmaßnahmen nicht mehr aus. Die Forderung nach beherrschten und fähigen Prozessen bedarf einem hohen Maß an Prozessverständnis. In der Forschungsarbeit wird eine Methode zur präventiven Qualitätsabsicherung für das Fused Deposition Modeling (FDM), auch Material Extrusion (MEX), Verfahren vorgestellt. Sie basiert auf der Modellierung des Prozesses entlang einer systematischen Vorgehensweise in sieben Schritten. Ziel ist die Prognose von Abweichungen und resultierenden Fehlern und deren prophylaktische Abschaltung. Zunächst werden die auf den Prozess wirkenden Einflussfaktoren, deren Interferenzen und Zusammenhänge mit Bauteileigenschaften untersucht. Es folgt eine detaillierte Betrachtung der Wirkmechanismen und physikalischen Phänomene im Fused Deposition Modeling. Die Methode wird an einem eigens entwickelten, verfahrensspezifischen Prüfkörper und einer zweistufigen Finite-Elemente-Simulation evaluiert und validiert. Für die numerische Analyse wird zunächst der thermische Gradient des Prüfkörpers während der Abkühlung ermittelt. Darauf aufbauend folgt eine mechanisch-statische Analyse zur Bestimmung von prozess- und materialbedingter Schwindung, Eigenspannungen und resultierender Verformung. Die Simulation wird durch den Vergleich von Messwerten mit einem physischen Bauteil validiert. Es wird ein Werkzeug zur Vorhersage von Bauteileigenschaften vorgestellt, das sowohl praktisch applikabel ist, als auch Anwendung für weitere Schichtbauverfahren finden kann.
  • Thumbnail Image
    ItemOpen Access
    Modell zum maschinellen Lernen von Wirkzusammenhängen bei der Holzverarbeitung auf Basis von online-erfassten Werkzeugmaschinendaten
    (Stuttgart : Fraunhofer Verlag, 2018) Lenz, Jürgen Herbert; Westkämper, Engelbert (Univ.-Prof. a. D. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult.)
    Aufgrund des immer härter werdenden globalen Wettbewerbs müssen produzierende Unternehmen, die auch in der Zukunft profitabel produzieren wollen, ihre Leistungsreserven nutzten. Die Möbelfertigung, die größte holzverarbeitende Industrie, besteht im Hauptprozess aus dem Fräsen von Holzwerkstoffen. Hierbei gibt es Leistungsreserven in der Einsatzplanung der Fräswerkzeuge. Gute Einsatzplanung ist die Voraussetzung für eine hohe Verfügbarkeit des Produktionssystems. Die Einsatzplanung wird durch Entwicklungen wie individuelle Möbelstücke, kleinere Losgrößen und neue Schneidstoffe erschwert. Die Herausforderung der Planungsunsicherheit beim Werkzeugeinsatz in der Holzbearbeitung wächst zusätzlich durch die größere Anzahl an industriell hergestellten Holzwerkstoffen mit jeweils unterschiedlicher Abrasivität. Dadurch wird die Bestimmung der Reststandzeit eines Werkzeuges erschwert. Zielsetzung dieser Arbeit ist die Planungssicherheit des Werkzeugeinsatzes durch eine exakte Planung des Werkzeugwechselfensters sowie durch Prognose der Reststandzeit zu erhöhen. Mithilfe dieser Prognose kann das gesamte Standvermögen des Werkzeuges verwendet werden. Das führt dazu, dass die Verfügbarkeit des Produktionssystems erhöht wird, da durch das Überschreiten der Werkzeugeinsatzgrenze bedingte Stillstände vermieden werden. Hierfür wurde ein Modell erstellt, das online erfasste Daten aus der Werkzeugmaschinensteuerung mit kontextbezogenen Informationen aus Datenbanken wie dem ERP-System und der Werkzeugverwaltung kombiniert. Aus diesen Informationen wird eine werkzeugspezifische Einsatzhistorie gebildet und mit gemessenen physikalischen Werten über den Werkzeugverschleiß und Kantenqualität des Werkstückes in Verbindung gebracht. Diese Verbindung von Bearbeitungshistorie und echten physikalischen Messgrößen bilden die Datenbasis für das maschinelle Lernen von Wirkzusammenhängen. Durch das Erlernen dieser Zusammenhänge kann die Reststandzeit eines Werkzeuges prognostiziert werden und somit die Planungsgenauigkeit des Werkzeugeinsatzes durch exakte Festlegung von Werkzeugwechselfenstern gesteigert werden. Zur Erprobung wurde das entwickelte Modell implementiert und seine Funktionsfähigkeit anhand einer Werkstoff-/Schneidstoffpaarung validiert. Diese Erprobung zeigte dass die Wirkzusammenhänge erlernt werden können.
  • Thumbnail Image
    ItemOpen Access
    Prozessplanungsmodell für eine Effizienzsteigerung von Inbetriebnahmeprozessen im Maschinenbau
    (Stuttgart : Fraunhofer Verlag, 2021) Sebastian, Pöschl; Bauernhansl, Thomas (Prof. Dr.-Ing.)
    Der Maschinenbau ist maßgeblich am Erfolg der produzierenden Industrie beteiligt, daher ist ein effizienter Produktentstehungsprozess besonders wichtig Dabei weisen vor allem Inbetriebnahmeprozesse, die den größten Anteil an Fehlerentdeckungen im Gesamtprozess haben, ein großes Optimierungspotenzial auf. Der steigende Druck auf Unternehmen im Maschinenbau unterstreicht die Notwendigkeit, die Inbetriebnahme einer genaueren Betrachtung zu unterziehen. Untersucht werden insbesondere Prüf- und Einstellprozesse, um die Justage zu verändern und nicht planbare Fehler zu finden. Während im Maschinenbau die Wahrscheinlichkeiten von Fehlern statistisch belegbar sind, muss in Neuentwicklungsprozessen und im Sondermaschinenbau auf Experten-erfahrungen zurückgegriffen werden. Der Forschungsansatz dieser Arbeit verdeutlicht das Potenzial der Prozessplanung unter der Berücksichtigung von Fehlerrisiken während der Inbetriebnahme. Damit wird in der Prozessplanung erstmals eine Risikoanalyse in die Berechnung der Durchlaufzeit integriert. Mithilfe eines Bayeschen Netzes kann die Struktur eines Prozessplans modelliert und mit Fehlerwahrscheinlichkeiten hinterlegt werden. Wegen der unsicheren Datenlage, insbesondere im Maschinenbau, sollte eine Robustheits-analyse in die Auswertung integriert und damit die Wahrscheinlichkeit der Auswahl des effizientesten Prozesses erhöht werden. Weiterhin werden für die Verbesserung der Datenqualität Akquisekonzepte für den Maschinenbau in den Planungsprozess eingeführt. Auf diese Weise ist es erstmals möglich, nicht nur die Durchlaufzeit eines Projektes zu betrachten, sondern gleichzeitig die wahrscheinlichste Durchlaufzeit und das resultierende Fehlerrisiko für den Kunden zu errechnen. In Fallbeispielen wird eine Prozessoptimierung beschrieben und die Durchlaufzeit um bis zu 40% reduziert. Der Ansatz dieses Prozessplanungsmodells für eine Effizienzsteigerung in Inbetriebnahmeprozessen im Maschinenbau leistet damit einen ent-scheidenden Beitrag, eine Forschungslücke in der Inbetriebnahme zu schließen. Zudem unterstützt er den Planungsprozess, indem er Risiken transparent darstellt.
  • Thumbnail Image
    ItemOpen Access
    Scheduling & routing time-triggered traffic in time-sensitive networks
    (2018) Nayak, Naresh Ganesh; Rothermel, Kurt (Prof. Dr. rer. nat. Dr. h. c.)
    The application of recent advances in computing, cognitive and networking technologies in manufacturing has triggered the so-called fourth industrial revolution, also referred to as Industry 4.0. Smart and flexible manufacturing systems are being conceived as a part of the Industry 4.0 initiative to meet the challenging requirements of the modern day manufacturers, e.g., production batch sizes of one. The information and communication technologies (ICT) infrastructure in such smart factories is expected to host heterogeneous applications ranging from the time-sensitive cyber-physical systems regulating physical processes in the manufacturing shopfloor to the soft real-time analytics applications predicting anomalies in the assembly line. Given the diverse demands of the applications, a single converged network providing different levels of communication guarantees to the applications based on their requirements is desired. Ethernet, on account of its ubiquity and its steadily growing performance along with shrinking costs, has emerged as a popular choice as a converged network. However, Ethernet networks, primarily designed for best-effort communication services, cannot provide strict guarantees like bounded end-to-end latency and jitter for real-time traffic without additional enhancements. Two major standardization bodies, viz., the IEEE Time-sensitive Networking (TSN) Task Group (TG) and the IETF Deterministic Networking (DetNets) Working Group are striving towards equipping Ethernet networks with mechanisms that would enable it to support different classes of real-time traffic. In this thesis, we focus on handling the time-triggered traffic (primarily periodic in nature) stemming from the hard real-time cyber-physical systems embedded in the manufacturing shopfloor over Ethernet networks. The basic approach for this is to schedule the transmissions of the time-triggered data streams appropriately through the network and ensure that the allocated schedules are adhered with. This approach leverages the possibility to precisely synchronize the clocks of the network participants, i.e., end systems and switches, using time synchronization protocols like the IEEE 1588 Precision Time Protocol (PTP). Based on the capabilities of the network participants, the responsibility of enforcing these schedules can be distributed. An important point to note is that the network utilization with respect to the time-triggered data streams depends on the computed schedules. Furthermore, the routing of the time-triggered data streams also influences the computed transmission schedules, and thus, affects the network utilization. The question however remains as to how to compute transmission schedules for time-triggered data streams along with their routes so that an optimal network utilization can be achieved. We explore, in this thesis, the scheduling and routing problems with respect to the time-triggered data streams in Ethernet networks. The recently published IEEE 802.1Qbv standard from the TSN-TG provides programmable gating mechanisms for the switches enabling them to schedule transmissions. Meanwhile, the extensions specified in the IEEE 802.1Qca standard or the primitives provided by OpenFlow, the popular southbound software-defined networking (SDN) protocol, can be used for gaining an explicit control over the routing of the data streams. Using these mechanisms, the responsibility of enforcing transmission schedules can be taken over by the end systems as well as the switches in the network. Alternatively, the scheduling can be enforced only by the end systems or only by the switches. Furthermore, routing alone can also be used to isolate time-triggered data streams, and thus, bound the latency and jitter experienced by the data streams in absence of synchronized clocks in the network. For each of the aforementioned cases, we formulate the scheduling and routing problem using Integer Linear Programming (ILP) for static as well as dynamic scenarios. The static scenario deals with the computation of schedules and routes for time-triggered data streams with a priori knowledge of their specifications. Here, we focus on computing schedules and routes that are optimal with respect to the network utilization. Given that the scheduling problems in the static setting have a high time-complexity, we also present efficient heuristics to approximate the optimal solution. With the dynamic scheduling problem, we address the modifications to the computed transmission schedules for adding further or removing already scheduled time-triggered data streams. Here, the focus lies on reducing the runtime of the scheduling and routing algorithms, and thus, have lower set-up times for adding new data streams into the network.
  • Thumbnail Image
    ItemOpen Access
    Mehrskalige Simulation von synthetischem Filtermaterial im rotativen Verarbeitungsprozess
    (2023) Höss, Kai; Schmauder, Siegfried (Prof. Dr. rer. nat. Dr. h.c.)
    Die vorliegende Arbeit erforscht simulativ das elastisch-plastische Verformungsverhalten von Polymerfaser-basierten Filtermedien im rotativen Verarbeitungsprozess. Die Berücksichtigung des anisotropen Materialverhaltens des Fasernetzwerks unter Zug, Druck und Schub ist hierbei essenziell. Eine 3D-Materialprüfungsreihe charakterisiert das Materialverhalten des porösen und faserigen Materials und dient dazu, erstmals das elastisch-plastische Verformungsverhalten von Filtermedien in allen drei Raumrichtungen und unter den Hauptlastfällen Zug, Druck und Schub umfassend zu untersuchen. Nach der Materialcharakterisierung wird ein robustes Mikrostruktursimulationsmodell entwickelt, das die Vorhersage des elastisch-plastischen Verhaltens von polymerbasierten Filtermedien ermöglicht. Besonderes Augenmerk liegt auf der Mikrostrukturanalyse und der Auswahl repräsentativer Volumenelemente. Das Modell wird anhand von Materialprüfungsergebnissen validiert. Die Mikrostruktursimulation liefert Erkenntnisse über die effektiven mechanischen Eigenschaften, die in einer Prozesssimulation des rotativen Verarbeitungsprozesses auf der Kontinuumsebene genutzt werden.
  • Thumbnail Image
    ItemOpen Access
    Beitrag zur Modellierung und Simulation des Strahlzerfalls bei der pneumatischen Lackzerstäubung
    (2020) Shen, Bo; Westkämper, Engelbert (Prof. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult.)
    Der Zerstäubungsprozess ist der zentrale Vorgang bei der Spritzlackierung. Bei pneumatischen Zerstäubern wird der Lack durch Zerstäubungsgase, die mit Hochgeschwindigkeit strömen, zerlegt. Der Einfluss der Eigenschaften der Zerstäubungsgase auf die Zerstäubung und den gesamten Spritzvorgang wird zuerst im Rahmen dieser Arbeit durch experimentelle und numerische Untersuchungen studiert. Hierbei ist festzustellen, dass Gase mit geringerer Dichte höhere Strömungsgeschwindigkeiten nahe am Zerstäuber erzielen und damit eine bessere Zerstäubung bewirken. Gleichzeitig fällt die Gasgeschwindigkeit schneller wieder ab, wodurch der Staudruck minimiert wird und ein hoher Lackauftragswirkungsgrad erzielt werden kann. Anschließend fokussiert diese Arbeit auf numerische Untersuchungen zum Primärzerfall von Flüssigkeitsstrahlen unter Verwendung der Volume-of-Fluid-Methode (VOF). In der Simulation sind unterschiedliche Zerfallserscheinungen zu beobachten. Die Länge des intakten Flüssigkeitsstrahls, welche häufig als Maßstab zur Bewertung der Zerstäubungsqualität verwendet wird, lässt sich ebenfalls bestimmen. Zum Herausfinden der Bedingungen für einen effizienten Primärzerfall werden zwei Zerfallsindizes eingeführt. Eine negative Korrelation zwischen den Zerfallsindizes und dem dynamischen Druckverhältnis ist festzustellen. Schließlich wird der Stahlzerfall separat mittels einer Hochgeschwindigkeitskamera und eines Laserbeugungssystems untersucht. Die erzielten Ergebnisse werden mit den Simulationsergebnissen verglichen.
  • Thumbnail Image
    ItemOpen Access
    Ressourceneffiziente Erzeugung ultra-transparenter Elektroden durch perkolierende Nanostrukturen
    (2016) Ackermann, Thomas; Westkämper, Engelbert (Prof. a. D. Dr.-Ing. Prof. E. h. Dr.-Ing. E. h. Dr. h. c. mult.)
    Transparente leitfähige Schichten (transparente Elektroden) sind elementare Bauteile in Touch-Modulen, Displays und Solarzellen. Die vorliegende Arbeit beschäftigt sich mit der Erzeugung transparenter Elektroden auf Basis alternativer Materialien, um die Defizite - insbesondere die Brüchigkeit und die relativ hohen Herstellungskosten - des konventionellen Materials Indiumzinnoxid zu umgehen. Zweidimensionale Netzwerke aus stäbchenförmigen elektrischen Leitern werden ausgehend von einer Dispersion durch Nassfilmbeschichtung hergestellt und hinsichtlich ihrer Eignung als transparente Elektroden untersucht. Dabei handelt es sich Netzwerke aus Silbernanodrähten und um Hybrid-Schichten aus Silbernanodrähten und Kohlenstoffnanoröhren (Co-Perkolation). Neben der Ableitung und Umsetzung Produkt- und Prozess-orientierter Ziele liefert die Arbeit einen Beitrag zum Verständnis der zweidimensionalen elektrischen Perkolation in Netzwerken aus stäbchenförmigen elektrischen Leitern, insbesondere nahe an der Perkolationsschwelle, bei der die Netzwerke eine sehr hohe Transparenz aufweisen, weshalb derartige Schichten als ultra-transparent bezeichnet werden. Diese Arbeit entstand an der Graduate School of Excellence advanced Manufacturing Engineering (GSaME) der Universität Stuttgart in Kooperation mit dem Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA) in Stuttgart.
  • Thumbnail Image
    ItemOpen Access
    Methode zur Planung modularer, produktflexibler Montagekonfigurationen in der variantenreichen Serienmontage : am Beispiel der Automobilindustrie
    (Stuttgart : Fraunhofer Verlag, 2017) Küber, Christian; Westkämper, Engelbert (Univ.-Prof. a. D. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult.)
    Die Automobilindustrie sieht sich mit der Herausforderung eines wachsenden Produktportfolios und neuer Fahrzeugtechnologien konfrontiert. Dadurch ist zukünftig die Nachfrageentwicklung kaum noch prognostizierbar und folglich auch nicht das fahrzeugspezifische Nachfragevolumen. Besondere Bedeutung ergibt sich daraus für das Gewerk der Montage, in dem ein Großteil der Fahrzeugvarianz entsteht. Indem mehr als ein Fahrzeug variantenmix-unabhängig auf einer gemeinsamen Linie montierbar ist, kann die Kapazität der Montagelinie für unterschiedliche Fahrzeuge bedarfsorientiert genutzt werden. Nachweislich existieren Freiheitsgrade in der Anordnung von Montagemodulen, die Arbeitsvorgänge zum Verbau einer Baugruppe bzw. eines Bauteils beinhalten. In der heutigen Montageplanung werden diese jedoch nicht methodisch genutzt. Darin besteht die Forschungslücke. Die entwickelte Planungsmethode nutzt die Freiheitgrade zwischen zuvor definierten, fahrzeug- und linienübergreifenden Montagemodulen für die Konfiguration fahrzeugflexibler Endmontagelinien.
  • Thumbnail Image
    ItemOpen Access
    Simulation des elektromagnetischen Geräusches einer permanentmagnetisch erregten Synchronmaschine unter Berücksichtigung der Rotordynamik und mechanischer Fügestellen
    (2021) Clappier, Marcel; Parspour, Nejila (Prof. Dr.-Ing.)
    Im Zuge der Elektrifizierung von Fahrzeugantrieben gewinnt die akustische Auslegung von elektrischen Maschinen zunehmend an Bedeutung und stellt eine wichtige Anforderung bei der Produktentwicklung dar. Durch das Downsizing von Verbrennungsmotoren bzw. durch eine vollständige Elektrifizierung verändert sich das akustische Verhalten im Fahrzeuginnenraum, sodass sich tonale elektromagnetische Geräusche störend auswirken können. Diese Arbeit konzentriert sich auf die Modellierung und Validierung des elektromagnetischen Geräusches einer permanentmagnetisch erregten Synchronmaschine. Die Zielstellung dieser Dissertation besteht darin, das elektromagnetische Geräusch unter Berücksichtigung der 3D Rotordynamik und mechanischer Fügestellen mit Hilfe von Finite-Elemente- und Randelemente-Modellen effizient zu berechnen. Der entwickelte Berechnungsansatz leistet einen Beitrag zur Berücksichtigung und akustischen Bewertung von rotordynamisch induzierten elektromagnetischen Seitenbändern, der statistischen Berechnung von Systemeigenfrequenzen sowie zur Prognose des Dämpfungsverhaltens von elektrischen Maschinen. Die Verifizierung des entwickelten Verfahrens erfolgt anhand von unterschiedlichen Messungen und Messdaten.