Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems
    (2019) Grunert, Dennis; Fehr, Jörg; Haasdonk, Bernard
    Model Order Reduction is used to vastly speed up simulations but it also introduces an error to the simulation results, which needs to be controlled. The performance of the general to use, a-posteriori error estimator of Ruiner et al. for second-order systems is analyzed and a bottleneck is found in the offline stage making it unusable for larger models. We use the spectral theorem, power series expansions, monotonicity properties, and self-tailored algorithms to speed up the offline stage largely by one polynomial order both in terms of computation time as well as storage complexity. All properties are proven rigorously. This eliminates the aforementioned bottleneck. Hence, the error estimator of Ruiner et al. can finally be used for large, linear, second-order mechanical systems reduced by any model reduction method based on Petrov-Galerkin reduction. The examples show speedups of up to 28.000 and the ability to compute much larger systems with a fixed amount of memory.
  • Thumbnail Image
    ItemOpen Access
    Symplectic model order reduction with non-orthonormal bases
    (2019) Buchfink, Patrick; Bhatt, Ashish; Haasdonk, Bernard
    Parametric high-fidelity simulations are of interest for a wide range of applications. But the restriction of computational resources renders such models to be inapplicable in a real-time context or in multi-query scenarios. Model order reduction (MOR) is used to tackle this issue. Recently, MOR is extended to preserve specific structures of the model throughout the reduction, e.g. structure-preserving MOR for Hamiltonian systems. This is referred to as symplectic MOR. It is based on the classical projection-based MOR and uses a symplectic reduced order basis (ROB). Such a ROB can be derived in a data-driven manner with the Proper Symplectic Decomposition (PSD) in the form of a minimization problem. Due to the strong nonlinearity of the minimization problem, it is unclear how to efficiently find a global optimum. In our paper, we show that current solution procedures almost exclusively yield suboptimal solutions by restricting to orthonormal ROBs. As new methodological contribution, we propose a new method which eliminates this restriction by generating non-orthonormal ROBs. In the numerical experiments, we examine the different techniques for a classical linear elasticity problem and observe that the non-orthonormal technique proposed in this paper shows superior results with respect to the error introduced by the reduction.