Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Sulfur‐composites derived from poly(acrylonitrile) and poly(vinylacetylene) : a comparative study on the role of pyridinic and thioamidic nitrogen
    (2023) Kappler, Julian; Klostermann, Sina V.; Lange, Pia L.; Dyballa, Michael; Veith, Lothar; Schleid, Thomas; Weil, Tanja; Kästner, Johannes; Buchmeiser, Michael R.
    Sulfurized poly(acrylonitrile) (SPAN) is a prominent example of a highly cycle stable and rate capable sulfur/polymer composite, which is solely based on covalently bound sulfur. However, so far no in‐depth study on the influence of nitrogen in the carbonaceous backbone, to which sulfur in the form of thioketones and poly(sulfides) is attached, exists. Herein, we investigated the role of nitrogen by comparing sulfur/polymer composites derived from nitrogen‐containing poly(acrylonitrile) (PAN) and nitrogen‐free poly(vinylacetylene) (PVac). Results strongly indicate the importance of a nitrogen‐rich, aromatic carbon backbone to ensure full addressability of the polymer‐bound sulfur and its reversible binding to the aromatic backbone, even at high current rates. This study also presents key structures, which are crucial for highly cycle and rate stable S‐composites.
  • Thumbnail Image
    ItemOpen Access
    Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials
    (2020) Li, Zheng; Rieg, Carolin; Beurer, Ann-Katrin; Benz, Michael; Bender, Johannes; Schneck, Christof; Traa, Yvonne; Dyballa, Michael; Hunger, Michael
    The interaction and nature of surface sites for water and methanol sorption on MFI-type zeolites and mesoporous SBA-15 were investigated by solid-state NMR spectroscopy and correlated with the desorption enthalpies determined via TGA/DSC. For siliceous Silicalite-1, 29Si CPMAS NMR studies support stronger methanol than water interactions with SiOH groups of Q3-type. On siliceous SBA-15, SiOH groups of Q2-type are accompanied by an enhanced hydrophilicity. In aluminum-containing Na-ZSM-5, Na+ cations are strong adsorption sites for water and methanol as evidenced by 23Na MAS NMR in agreement with high desorption enthalpies of ΔH = 66-74 kJ/mol. Solid-state NMR of aluminum-containing Na-[Al]SBA-15, in contrast, has shown negligible water and methanol interactions with sodium and aluminum. Desorption enthalpies of ΔH = 44-60 kJ/mol hint at adsorption sites consisting of SiOH groups influenced by distant framework aluminum. On H-ZSM-5, Brønsted acidic OH groups are strong adsorption sites as indicated by partial protonation of water and methanol causing low-field shifts of their 1H MAS NMR signals and enhanced desorption enthalpies. Due to the small number of Brønsted acid sites in aluminum-containing H-[Al]SBA-15, water and methanol adsorption on this material is suggested to mainly occur at SiOH groups with distant framework aluminum species, as in the case of Na-[Al]SBA-15.