Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Thermal history dependent Al distribution in aluminum substituted strontium hexaferrite
    (2020) Häßner, Manuel; Vinnik, Denis A.; Niewa, Rainer
    Single crystals of aluminum substituted strontium hexaferrite SrFe12-xAlxO19 were grown from sodium oxide based flux. The substitution level aimed for was x = 1.2. Annealing experiments performed on single crystals show that the Al distribution on the five iron sites of the hexaferrite structure depends on the annealing time at 900 °C. Single crystal X-ray diffractometry shows that annealing a crystal after the initial synthesis has an impact on the Al content on the octahedrally and tetrahedrally coordinated sites. Furthermore, it was found that heating in a corundum crucible increases the overall Al content. Magnetic measurements show that annealing in a platinum or corundum crucible decreases coercivity and remanence while the saturation magnetization is hardly influenced.
  • Thumbnail Image
    ItemOpen Access
    Crystal structure and XPS study of titanium-substituted M-type hexaferrite BaFe12−xTixO19
    (2023) Mehnert, Kim-Isabelle; Häßner, Manuel; Dreer, Yanina Mariella; Biswas, Indro; Niewa, Rainer
    The M-type barium hexaferrite substituted with titanium, BaFe12−xTixO19, was synthesized from sodium carbonate flux and the obtained single crystals with a maximum degree of substitution of up to about x = 0.9 were characterized. XPS measurements were carried out for the identification of side products and in particular in order to assign the valence states of the transition-metal constituents. Due to the aliovalent exchange of iron(III) with titanium(IV), an additional charge balance needs to occur. No titanium(III) was detected, while the amount of iron(II) increased in the same order of magnitude as the amount of titanium(IV); thus, the major charge balancing is attributed to the reduction of iron(III) to iron(II). According to the XPS data, the amount of titanium(IV) typically is slightly higher than that of iron(II). This is in line with a tendency to a minor formation of vacancies on the transition-metal sites becoming more important at higher substitution levels according to PXRD and WDS measurements, completing the picture of the charge-balance mechanism. XRD taken on single crystals indicates the distribution of titanium and vacancies over three of the five transition-metal sites.