Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Holistic quality model and assessment : supporting decision-making towards sustainable construction using the design and production of graded concrete components as an example
    (2022) Frost, Deniz; Gericke, Oliver; Di Bari, Roberta; Balangé, Laura; Zhang, Li; Blagojevic, Boris; Nigl, David; Haag, Phillip; Blandini, Lucio; Jünger, Hans Christian; Kropp, Cordula; Leistner, Philip; Sawodny, Oliver; Schwieger, Volker; Sobek, Werner
    This paper describes a holistic quality model (HQM) and assessment to support decision-making processes in construction. A graded concrete slab serves as an example to illustrate how to consider technical, environmental, and social quality criteria and their interrelations. The evaluation of the design and production process of the graded concrete component shows that it has advantages compared to a conventional solid slab, especially in terms of environmental performance. At the same time, the holistic quality model identifies potential improvements for the technology of graded concrete. It will be shown that the holistic quality model can be used to (a) consider the whole life cycle in decision-making in the early phases and, thus, make the complexity of construction processes manageable for quality and sustainability assessments and (b) make visible interdependencies between different quality and sustainability criteria, to help designers make better-informed decisions regarding the overall quality. The results show how different quality aspects can be assessed and trade-offs are also possible through the understanding of the relationships among characteristics. For this purpose, in addition to the quality assessment of graded concrete, an overview of the interrelations of different quality characteristics is provided. While this article demonstrates how a HQM can support decision-making in design, the validity of the presented evaluation is limited by the data availability and methodological challenges, specifically regarding the quantification of interrelations.
  • Thumbnail Image
    ItemOpen Access
    Semiautomated primary layout definition with a point cloud for building-envelope renovation
    (2024) Iturralde, Kepa; Gambao, Ernesto; Bock, Thomas
    Prefabricated modules are being used to renovate the building envelope. However, compared to manual methods, the design and prefabricated module’s definition is time consuming. Therefore, it is necessary to improve the efficiency of the prefabricated layout definition processes by incorporating automation and computational design. The purpose of this paper is to present a semi-automated definition of the layout of the prefabricated modules with the only input of the existing building facade being the Point Cloud. In this research, a novel step-by-step workflow was developed. More precisely, an algorithm was developed that processes the coordinates of each point of the cloud and generates the layout of the prefabricated modules. To validate the workflow and the algorithm, four facades were tested, considering two parameters: (a) working time and (b) output accuracy. According to the results, it was concluded that spending more time achieving an accurate laser data acquisition can be a good strategy to obtain the primary layout with sufficient precision.