Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 24
  • Thumbnail Image
    ItemOpen Access
    Mechanical properties and electrical discharge machinability of alumina-10 vol% zirconia-28 vol% titanium nitride composites
    (2020) Gommeringer, Andrea; Kern, Frank
    Electrical discharge machinable ceramics provide an alternative machining route independent on the material hardness which enables manufacturing of customized ceramic components. In this study a composite material based on an alumina/zirconia matrix and an electrically conductive titanium nitride dispersion was manufactured by hot pressing and characterized with respect to microstructure, mechanical properties and ED-machinability by die sinking. The composites show a combination of high strength of 700 MPa, hardness of 17-18 GPa and moderate fracture resistance of 4.5-5 MPa√m. With 40 kS/m the electrical conductivity is sufficiently high to ensure ED-machinability.
  • Thumbnail Image
    ItemOpen Access
    Plasma spraying of a microwave absorber coating for an RF dummy load
    (2021) Killinger, Andreas; Gantenbein, Gerd; Illy, Stefan; Ruess, Tobias; Weggen, Jörg; Martinez-Garcia, Venancio
    The European fusion reactor research facility, called International Thermonuclear Experimental Reactor (ITER), is one of the most challenging projects that involves design and testing of hundreds of separately designed reactor elements and peripheric modules. One of the core elements involved in plasma heating are gyrotrons. They are used as a microwave source in electron-cyclotron resonance heating systems (ECRH) for variable injection of RF power into the plasma ring. In this work, the development and application of an alumina-titania 60/40 mixed oxide ceramic absorber coating on a copper cylinder is described. The cylinder is part of a dummy load used in gyrotron testing and its purpose is to absorb microwave radiation generated by gyrotrons during testing phase. The coating is applied by means of atmospheric plasma spraying (APS). The absorber coating is deposited on the inner diameter of a one-meter cylindrical tube. To ensure homogeneous radiation absorption when the incoming microwave beam is repeatedly scattered along the inner tube surface, the coating shows a varying thickness as a function of the tube length. By this it is ensured that the thermal power is distributed homogeneously on the entire inner tube surface. This paper describes a modeling approach of the coating thickness distribution, the manufacturing concept for the internal plasma spray coating and the coating characterization with regard to coating microstructure and microwave absorption characteristics.
  • Thumbnail Image
    ItemOpen Access
    PA-12-zirconia-alumina-cenospheres 3D printed composites : accelerated ageing and role of the sterilisation process for physicochemical properties
    (2022) Nakonieczny, Damian S.; Antonowicz, Magdalena; SimhaMartynkova, Gražyna; Kern, Frank; Pazourková, Lenka; Erfurt, Karol; Hüpsch, Michał
    The aim of this study was to conduct artificial ageing tests on polymer-ceramic composites prepared from polyamide PA-12 polymer matrix for medical applications and three different variants of ceramic fillers: zirconia, alumina and cenospheres. Before ageing, the samples were subjected to ethyl oxide sterilization. The composite variants were prepared for 3D printing using the fused deposition modeling method. The control group consisted of unsterilized samples. Samples were subjected to artificial ageing in a high-pressure autoclave. Ageing conditions were calculated from the modified Hammerlich Arrhenius kinetic equation. Ageing was carried out in artificial saliva. After ageing the composites were subjected to mechanical (tensile strength, hardness, surface roughness) testing, chemical and structural (MS, FTIR) analysis, electron microscopy observations (SEM/EDS) and absorbability measurements.
  • Thumbnail Image
    ItemOpen Access
    Modelling and experimental validation of the flame temperature profile in atmospheric plasma coating processes on the substrate
    (2024) Martínez-García, Jose; Martínez-García, Venancio; Killinger, Andreas
    This work presents a characterisation model for the temperature distribution at different substrate depths during the atmospheric plasma spray (APS) coating process. The torch heat flow in this model is simulated as forced convection defined by a surface, a temperature profile, and a convection coefficient. The simulation model considers three plasma temperature profiles of the Al2O3 coating on a 5 mm thickness flat aluminium substrate. The simple and low-cost experimental procedure, based on a thermocouple, measures the plasma plume temperature distribution of the APS coating system, and their results are used to obtain the parameter values of each of the three proposed plasma temperature profiles. The experimental method for in situ non-contact temperature measurements inside the substrate is based on an infrared pyrometry technique and validates the simulation results. The Gaussian temperature profile shows excellent accuracy with the measured temperatures. The Gaussian approach could be a powerful tool for predicting residual stress through a coupled one-way thermal-mechanical analysis of the APS process.
  • Thumbnail Image
    ItemOpen Access
    Inversely 3D-printed β-TCP scaffolds for bone replacement
    (2019) Seidenstücker, Michael; Lange, Svenja; Esslinger, Steffen; Latorre, Sergio H.; Krastev, Rumen; Gadow, Rainer; Mayr, Hermann O.; Bernstein, Anke
  • Thumbnail Image
    ItemOpen Access
    Immobilization of TiO2 photocatalysts for water treatment in geopolymer based coatings
    (2023) Dufner, Lukas; Ott, Felix; Otto, Nikolai; Lembcke, Tom; Kern, Frank
    This study presents a simple and sustainable coating technology for the deposition of photocatalytic coatings based on titanium dioxide and geopolymers, which requires no thermal post-treatment. Titania powder P25, potassium silicate and a calcium aluminate-based hardener were dispersed in water and applied to aluminum substrates using a paintbrush, a roller and a spray gun. The coatings were air-dried for 12 h. The photocatalytic activities were tested via degradation of an aqueous methylene blue solution in a batch reactor under artificial UV-A light. The roller and the spray gun-based coatings yielded well-adhering coatings with high photocatalytic activity. Brushed coatings were inhomogeneous and unstable. The presented method of producing photocatalytic coatings is very simple to apply and does not require complex technologies or energy-intensive thermal treatments.
  • Thumbnail Image
    ItemOpen Access
    Mechanical properties of an extremely tough 1.5 mol% yttria-stabilized zirconia material
    (2024) Kern, Frank; Osswald, Bettina
    Yttria-stabilized zirconia (Y-TZP) ceramics with a drastically reduced yttria content have been introduced by different manufacturers, aiming at improving the damage tolerance of ceramic components. In this study, an alumina-doped 1.5Y-TZP was axially pressed, pressureless sintered in air at 1250–1400 °C for 2 h and characterized with respect to mechanical properties, microstructure, and phase composition. The material exhibits a combination of a high strength of 1000 MPa and a high toughness of 8.5-10 MPa√m. The measured fracture toughness is, however, extremely dependent on the measurement protocol. Direct crack length measurements overestimate toughness due to trapping effects. The initially purely tetragonal material has a high transformability of >80%, the transformation behavior is predominantly dilational, and the measured R-curve-related toughness increments are in good agreement with the transformation toughness increments derived from XRD data.
  • Thumbnail Image
    ItemOpen Access
    Effect of simulated mastication on structural stability of prosthetic zirconia material after thermocycling aging
    (2023) Ziębowicz, Anna; Oßwald, Bettina; Kern, Frank; Schwan, Willi
    Recent trends to improve the aesthetic properties-tooth-like color and translucency-of ceramic dental crowns have led to the development of yttria-stabilized zirconia (Y-TZP) materials with higher stabilizer content. These 5Y-TZP materials contain more cubic or t’ phase, which boosts translucency. The tradeoff as a consequence of a less transformable tetragonal phase is a significant reduction of strength and toughness compared to the standard 3Y-TZP composition. This study aims at determining the durability of such 5Y-TZP crowns under lab conditions simulating the conditions in the oral cavity during mastication and consumption of different nutrients. The test included up to 10,000 thermal cycles from 5 °C to 55 °C “from ice cream to coffee” and a chewing simulation representing 5 years of use applying typical loads. The investigation of the stress-affected zone at the surface indicates only a very moderate phase transformation from tetragonal to monoclinic after different varieties of testing cycles. The surface showed no indication of crack formation after testing. It can, therefore, be assumed that over the simulated period, dental crowns of 5Y-TZP are not prone to fatigue failure.
  • Thumbnail Image
    ItemOpen Access
    Deposition of 3YSZ-TiC PVD coatings with high-power impulse magnetron sputtering (HiPIMS)
    (2021) Gaedike, Bastian; Guth, Svenja; Kern, Frank; Killinger, Andreas; Gadow, Rainer
    Optimized coating adhesion and strength are the advantages of high-power impulse magnetron sputtering (HiPIMS) as an innovative physical vapor deposition (PVD) process. When depositing electrically non-conductive oxide ceramics as coatings with HiPIMS without dual magnetron sputtering (DMS) or mid-frequency (MF) sputtering, the growing coating leads to increasing electrical insulation of the anode. As a consequence, short circuits occur, and the process breaks down. This phenomenon is also known as the disappearing anode effect. In this study, a new approach involving adding electrically conductive carbide ceramics was tried to prevent the electrical insulation of the anode and thereby guarantee process stability. Yttria-stabilized zirconia (3YSZ) with 30 vol.% titanium carbide (TiC) targets are used in a non-reactive HiPIMS process. The main focus of this study is a parameter inquisition. Different HiPIMS parameters and their impact on the measured current at the substrate table are analyzed. This study shows the successful use of electrically conductive carbide ceramics in a non-conductive oxide as the target material. In addition, we discuss the observed high table currents with a low inert gas mix, where the process was not expected to be stable.
  • Thumbnail Image
    ItemOpen Access
    Mechanical properties of 2Y-TZP fabricated from detonation synthesized powder
    (2020) Kern, Frank; Gommeringer, Andrea
    Yttria stabilized zirconia (Y-TZP) is frequently used in dental and engineering applications due to its high strength and fracture resistance. In this study, 2Y-TZP samples were manufactured from commercially available powder produced by detonation synthesis. Tests of the mechanical properties exhibited an unusual combination of both very high strength and toughness. The materials show a very weak correlation between toughness and grain size. The transformability, measurable by XRD, cannot explain the high toughness. Fractographic analysis revealed a broad transformation affected zone with secondary cracks and shear bands on the tensile side of bending bars which can be made responsible for the high toughness and non-linear stress-strain curves.