Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
20 results
Search Results
Item Open Access Untersuchungen zur Manipulation des Lastabtrages biegebeanspruchter Betonbauteile durch integrierte fluidische Aktoren(2022) Kelleter, Christian; Sobek, Werner (Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c.)Item Open Access Designing actuation concepts for adaptive slabs with integrated fluidic actuators using influence matrices(2022) Nitzlader, Markus; Steffen, Simon; Bosch, Matthias J.; Binz, Hansgeorg; Kreimeyer, Matthias; Blandini, LucioPrevious work has shown that floor slabs make up most of the material mass of building structures and are typically made of reinforced concrete. Considering the associated resource consumption and greenhouse gas emissions, new approaches are needed in order to reduce the built environment’s impact on the ongoing climate crisis. Various studies have demonstrated that adaptive building structures offer a potential solution for reducing material resource consumption and associated emissions. Adaptive structures have the ability to improve load-bearing performance by specifically reacting to external loads. This work applies the concept of adaptive structures to reinforced concrete slabs through the integration of fluidic actuators into the cross-section. The optimal integration of actuators in reinforced concrete slabs is a challenging interdisciplinary design problem that involves many parameters. In this work, actuation influence matrices are extended to slabs and used as an analysis and evaluation tool for deriving actuation concepts for adaptive slabs with integrated fluidic actuators. To define requirements for the actuator concept, a new procedure for the selection of actuation modes, actuator placement and the computation of actuation forces is developed. This method can also be employed to compute the required number of active elements for a given load case. The new method is highlighted in a case study of a 2 m × 2 m floor.Item Open Access Editorial - transformable structures and envelopes in architecture and civil engineering(2023) Phocas, Marios C.; Matheou, MariaItem Open Access Investigation of a large‐scale adaptive concrete beam with integrated fluidic actuators(2022) Burghardt, Timon; Kelleter, Christian; Bosch, Matthias; Nitzlader, Markus; Bachmann, Matthias; Binz, Hansgeorg; Blandini, Lucio; Sobek, WernerAs the world population keeps growing, so does the demand for new construction. Considering material resources are limited, it will be unfeasible to meet such demand employing conventional construction methods. A new resource‐saving approach is provided by adaptive structures. Using sensors, actuators and control units, structures are enabled to adapt to loads, for example, to compensate for deformations. Since deformations are dominant in the design of bending‐stressed load‐bearing structures, adaptivity enables such structures to be realized using less material and achieving the same load‐bearing capacity in comparison to conventional designs. This article presents a concrete beam of typical building dimensions that compensates deflections by means of integrated fluidic actuators. These actuators offer the possibility of reacting optimally to general loading. The investigation is carried out on an approximately 4‐m‐long beam with integrated hydraulic actuators. To ensure the overall functionality, accurate dimensioning of the beam as well as the hydraulic system is mandatory. Analytical design of the beam and actuation system are carried out for predimensioning. Experimental testing validates the function and demonstrates that the adaptive beam works as predicted. A fully compensation in deflection is possible. Therefore, a significant increase in load‐bearing capacity is possible with the same material input compared to conventional beams.Item Open Access Monitoring of the production process of graded concrete component using terrestrial laser scanning(2021) Yang, Yihui; Balangé, Laura; Gericke, Oliver; Schmeer, Daniel; Zhang, Li; Sobek, Werner; Schwieger, VolkerItem Open Access Holistic quality model and assessment : supporting decision-making towards sustainable construction using the design and production of graded concrete components as an example(2022) Frost, Deniz; Gericke, Oliver; Di Bari, Roberta; Balangé, Laura; Zhang, Li; Blagojevic, Boris; Nigl, David; Haag, Phillip; Blandini, Lucio; Jünger, Hans Christian; Kropp, Cordula; Leistner, Philip; Sawodny, Oliver; Schwieger, Volker; Sobek, WernerThis paper describes a holistic quality model (HQM) and assessment to support decision-making processes in construction. A graded concrete slab serves as an example to illustrate how to consider technical, environmental, and social quality criteria and their interrelations. The evaluation of the design and production process of the graded concrete component shows that it has advantages compared to a conventional solid slab, especially in terms of environmental performance. At the same time, the holistic quality model identifies potential improvements for the technology of graded concrete. It will be shown that the holistic quality model can be used to (a) consider the whole life cycle in decision-making in the early phases and, thus, make the complexity of construction processes manageable for quality and sustainability assessments and (b) make visible interdependencies between different quality and sustainability criteria, to help designers make better-informed decisions regarding the overall quality. The results show how different quality aspects can be assessed and trade-offs are also possible through the understanding of the relationships among characteristics. For this purpose, in addition to the quality assessment of graded concrete, an overview of the interrelations of different quality characteristics is provided. While this article demonstrates how a HQM can support decision-making in design, the validity of the presented evaluation is limited by the data availability and methodological challenges, specifically regarding the quantification of interrelations.Item Open Access D1244: Design and construction of the first adaptive high-rise experimental building(2022) Blandini, Lucio; Haase, Walter; Weidner, Stefanie; Böhm, Michael; Burghardt, Timon; Roth, Daniel; Sawodny, Oliver; Sobek, WernerAn interdisciplinary research team of the University of Stuttgart has been working extensively since 2017 on the development and integration of adaptive systems and technologies in order to provide solutions for a more sustainable built environment. An experimental 36.5 m tall high-rise building, called D1244, was designed and completed in 2021 to show the potential of adaptive structures and facades as well as to verify on a real scale the developed systems and the related numerical predictions. The building was designed to offer a flexible experimental platform: each component is dismountable so that structural as well as facades elements can be replaced with new ones introducing new functionalities to be investigated. The structure is currently equipped with twenty-four hydraulic actuators that are installed in the columns and diagonal bracers. Strain gauge sensors and an optical tracking system are employed to monitor the state of the structural system. This paper describes the design and construction of the adaptive tower as well as the preliminary experimental testing on different scaled structural prototypes. The research work on these prototypes provided relevant information for the final set-up of the high-rise building. An outlook on future research, including the planned first structural testing phase and the implementation of adaptive facade systems, is included at the end.Item Open Access Using influence matrices as a design and analysis tool for adaptive truss and beam structures(2020) Steffen, Simon; Weidner, Stefanie; Blandini, Lucio; Sobek, WernerDue to the already high and still increasing resource consumption of the building industry, the imminent scarcity of certain building materials and the occurring climate change, new resource- and emission-efficient building technologies need to be developed. This need for new technologies is further amplified by the continuing growth of the human population. One possible solution proposed by researchers at the University of Stuttgart, and which is currently further examined in the context of the Collaborative Research Centre (SFB) 1244 Adaptive Skins and Structures for the Built Environment of Tomorrow is that of adaptivity. The integration of sensors, actuators, and a control unit enables structures to react specifically to external loads, when needed (e.g., in the case of high but rare loads). For example, adaptivity in load-bearing structures allows for a reduction of deflections or a homogenization of stresses. This in its turn allows for ultra-lightweight structures with significantly reduced material consumption and emissions. To reach ultra-lightweight structures, i.e., adaptive load-bearing structures, two key questions need to be answered. First, the question of optimal actuator placement and, second, which type of typology (truss, frame, etc.) is most effective. One approach for finding the optimal configuration is that of the so-called influence matrices. Influence matrices, as introduced in this paper, are a type of sensitivity matrix, which describe how and to which extend various properties of a given load-bearing structure can be influenced by different types of actuation principles. The method of influence matrices is exemplified by a series of studies on different configurations of a truss structure.Item Open Access Untersuchung von verglasten, adaptiven, vorgespannten Seilfassaden unter Windbeanspruchung(2021) Flaig, Christine; Sobek, Werner (Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c.)In dieser Arbeit wird eine Strategie für die Adaption sowie für die Bemessung von adaptiven, vertikal vorgespannten Seilfassaden mit Seilpaaren unter statischer Windbeanspruchung entwickelt. Aufgrund des nichtlinearen Tragverhaltens von Seiltragwerken wird zwischen Seilkraft- und Verformungsmanipulation differenziert. In Anlehnung an verschiedene Sicherheitskonzepte wird ein Adaptionskonzept erarbeitet, welches sich allgemein auf adaptive Seilfassaden anwenden lässt. Bei diesem Konzept werden drei Modi (A, B und C) mit verschiedenen Böenwindgeschwindigkeitsbereichen für das adaptive Fassadensystem definiert. Modus A: das System ist passiv und der Lastabtrag erfolgt ohne Aktivierung der Aktoren; Modus B: das System passt sich aktiv an die vorherrschende Beanspruchungssituation an, um die Verformungen normal zur Glasebene zu reduzieren; Modus C: das System reduziert aktiv die Seilkräfte, um die Tragfähigkeit des Tragwerks bei außergewöhnlichen Beanspruchungen zu gewährleisten. Dieser Modus garantiert, dass das System bei einem Systemausfall oder eventuellen Störfällen in einen sicheren Zustand überführt wird. Für vertikal vorgespannte Seilfassaden mit Seilpaaren werden verschiedene Adaptionsmöglichkeiten an einem geeigneten Ersatzsystem (Simulationsmodell) mittels Finite-Elemente-Methode (FEM) analysiert. Dabei wird der Einfluss von Aktoren untersucht, die parallel und senkrecht zur Seilachse angeordnet sind. Des Weiteren werden mehrere Optimierungsziele definiert und das Zusammenwirken der verschiedenen Aktorpositionen wird mittels Sensitivitätsanalyse bewertet. Auf diesen Ergebnissen aufbauend wird die Adaptionsstrategie für vertikal vorgespannte Seilfassaden mit Seilpaaren hergeleitet. Mit dieser Strategie können für definierte Böenwindgeschwindigkeiten sowohl die Verformungen normal zur Glasebene auf ein Minimum reduziert werden als auch die Seilkräfte bei Extremereignissen so manipuliert werden, dass die Grenzzugkraft nicht überschritten wird. Das Simulationsmodell wird experimentell validiert. Hierfür werden Versuche zur Verformungsadaption bei Winddruck an einem Prototyp eines adaptiven Fassadenmoduls durchgeführt. Im Rahmen einer Fallstudie werden passive (konventionelle) und adaptive, vertikal vorgespannte Seilfassaden mit Seilpaaren gegenübergestellt. Die Bemessung der passiven Fassaden erfolgt gemäß den gültigen Normen. Die Bemessung der adaptiven Fassaden erfolgt in Anlehnung an die gültigen Normen und wird entsprechend der Adaptionsstrategie angepasst. Der betrachtete Standort ist Stuttgart. Auf Grundlage von statistischen Methoden wird die Verteilungsfunktion der Böenwindgeschwindigkeit und der Grenzwert der Böenwindgeschwindigkeit für die einzelnen Modi berechnet. Die Grenzwerte werden zur Bemessung der adaptiven Systeme herangezogen. Die Systeme werden hinsichtlich des Tragverhaltens und der energetischen Aspekte miteinander verglichen. Hierbei werden die Verformungen normal zur Glasebene, die Seilkräfte sowie der Materialeinsatz ausgewertet.Item Open Access Ableitung von Typologien adaptiver Hochhausstabtragwerke mittels der Methode der Einflussmatrizen(2023) Steffen, Simon; Sobek, Werner (Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c.)Im Jahr 2015 haben 194 Länder und die Europäische Union im Pariser Klimaabkommen vereinbart, die Erderwärmung auf 1,5 °C zu beschränken. Um dies zu erreichen, müssen unter anderem alle produzierenden Industrien eine erhebliche Transformation umsetzen, um Produktion und Produkte nachhaltiger zu gestalten. Eine tragende Rolle kommt hierbei dem Bauwesen zu, da es für etwa die Hälfte der weltweiten Treibhausgas-Emissionen und ca. die Hälfte der weltweiten Energieaufwendung verantwortlich ist. Weiterhin führt der hohe Ressourcenverbrauch des Bauwesens zu einer Verknappung von wichtigen Baumaterialien, die zudem noch ungenügend rezykliert werden. In Verbindung mit der global wachsenden Bevölkerung und dem steigendem Wohlstand in den sogenannten „Entwicklungsländern“ wird deutlich, dass neue Technologien, Entwurfsmethoden und Tragwerkstypologien erforderlich sind, um die Umweltwirkung des Bauwesens zu verringern und das Pariser Klimaziel einzuhalten. Die vorliegende Arbeit greift den Lösungsansatz adaptiver Tragwerke auf. Adaptive Tragwerke sind mit Sensoren, Aktoren und Regelungseinheiten ausgestattet. Diese ermöglichen es, auf Basis einer hinterlegten Regelung das Tragverhalten der Tragwerke mechanisch an die aktuelle Belastungssituation anzupassen. Wird diese Anpassungsfähigkeit genutzt, um gezielt Beanspruchungszustände zu optimieren oder aktiv Verformungen zu reduzieren, können im Tragwerk Material und Emissionen eingespart werden. Der Fokus der Arbeit liegt auf adaptiven Hochhausstabtragwerken, da Hochhäuser eine mögliche Antwort auf die zunehmende Urbanisierung darstellen, sodass eine weitflächige Ausdehnung der Städte und die damit verbundene hohe Flächenversiegelung vermieden werden kann. Das Ziel dieser Arbeit ist die Ableitung von Typologien adaptiver Hochhausstabtragwerke, die zu Materialeinsparungen gegenüber konventionellen Tragwerken führen. Eine Bilanzierung der Emissionen erfolgt in dieser Arbeit nicht. Hieraus leiten sich die folgenden Forschungsfragen ab: • Was ist das Entwurfsproblem konventioneller passiver Hochhaustragwerke? Ermöglicht eine Adaption Materialeinsparungen? • Welches Aktuierungsziel führt bei Hochhaustragwerken zu Materialeinsparungen? Was ist das Entwurfsproblem adaptiver Hochhaustragwerke? • Mit welchem Aktuierungskonzept kann das Aktuierungsziel in unterschiedlichen Tragwerkstypologien erreicht werden? • In welcher Größenordnung liegen die potenziellen Materialeinsparungen? Die Beantwortung der Fragen erfolgt anhand von Literaturrecherchen sowie mit Hilfe von analytischer und numerischer Untersuchungen. Nach einer qualitativen Herleitung des primären Aktuierungsziels einer Verformungsadaption werden Aktuierungskonzepte für ausgewählte Hochhausstabtragwerkstypologien erarbeitet. Im ersten Schritt wird mithilfe von Einflussmatrizen die inhärente Adaptierbarkeit von vier Aussteifungsmodulen analysiert. Die mit Hilfe von verschiedener Aktuierungsprinzipien erzeugbaren Verformungsfiguren und zugehörigen Schnittgrößenverläufe werden untersucht und erklärt. Anschließend werden die Grundmodule zu abstrahierten Aussteifungssystemen zusammengesetzt und das Anwendungspotenzial unterschiedlicher Aktuierungskonzepte diskutiert. Im nächsten Schritt werden unterschiedliche Möglichkeiten erörtert, mit Hilfe derer die abstrahierten Aussteifungssysteme zu Hochhaustragwerken erweitert werden können. Auf dieser Basis wird als Viertes das Adaptionspotenzial ausgewählter konventioneller Hochhausstabtragwerkstypologien eingeordnet und neue Typologien abgeleitet. Abschließend werden für die untersuchten Hochhausstabtragwerkstypologien anhand von numerischen Parameterstudien die Materialeinsparungspotenziale abgeschätzt und die abgeleiteten Aktuierungskonzepte und Typologien simulativ validiert. Die Arbeit zeigt, dass Materialeinsparungen in erster Linie erzielt werden, wenn in der Bemessung des passiven Tragwerks ein Steifigkeitsproblem vorliegt. Je maßgebender das Steifigkeitsproblem, desto größer das Einsparungspotenzial durch Adaption, welches mit einer zunehmenden Schlankheit des Aussteifungssystems korrespondiert. Zwei grundlegende Aktuierungskonzepte werden entwickelt. Im ersten Aktuierungskonzept erfolgt die Verformungsadaption beanspruchungsfrei. Im zweiten Aktuierungskonzept ist die Verformungsadaption an eine Beanspruchungsmanipulation gekoppelt, welche zusätzliche Materialeinsparungen ermöglichen kann. Welches Aktuierungskonzept eingesetzt werden sollte, hängt von der Hochhaustragwerkstypologie ab und kann von dessen passivem Tragverhalten abgeleitet werden. Insgesamt kann aufgewiesen werden, dass eine mechanische Adaption von Hochhaustragwerken signifikante Materialeinsparungen ermöglicht und somit eine sinnvolle Lösung zur Reduktion der Umweltwirkung des Bauwesens darstellt, speziell in Anbetracht der zunehmenden Urbanisierung.