Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 27
  • Thumbnail Image
    ItemOpen Access
    Statistical power analysis in reliability demonstration testing : the probability of test success
    (2022) Grundler, Alexander; Dazer, Martin; Herzig, Thomas
    Statistical power analyses are used in the design of experiments to determine the required number of specimens, and thus the expenditure, of a test. Commonly, when analyzing and planning life tests of technical products, only the confidence level is taken into account for assessing uncertainty. However, due to the sampling error, the confidence interval estimation varies from test to test; therefore, the number of specimens needed to yield a successful reliability demonstration cannot be derived by this. In this paper, a procedure is presented that facilitates the integration of statistical power analysis into reliability demonstration test planning. The Probability of Test Success is introduced as a metric in order to place the statistical power in the context of life test planning of technical products. It contains the information concerning the probability that a life test is capable of demonstrating a required lifetime, reliability, and confidence. In turn, it enables the assessment and comparison of various life test types, such as success run, non-censored, and censored life tests. The main results are four calculation methods for the Probability of Test Success for various test scenarios: a general method which is capable of dealing with all possible scenarios, a calculation method mimicking the actual test procedure, and two analytic approaches for failure-free and failure-based tests which make use of the central limit theorem and asymptotic properties of several statistics, and therefore simplify the effort involved in planning life tests. The calculation methods are compared and their respective advantages and disadvantages worked out; furthermore, the scenarios in which each method is to be preferred are illustrated. The applicability of the developed procedure for planning reliability demonstration tests using the Probability of Test Success is additionally illustrated by a case study.
  • Thumbnail Image
    ItemOpen Access
    Comprehensive study of failure mechanisms of field-aged automotive lead batteries
    (2023) Conradt, Rafael; Schröer, Philipp; Dazer, Martin; Wirth, Jonathan; Jöris, Florian; Schulte, Dominik; Birke, Kai Peter
    Modern vehicles have increasing safety requirements and a need for reliable low-voltage power supply in their on-board power supply systems. Understanding the causes and probabilities of failures in a 12 V power supply is crucial. Field analyses of aged and failed 12 V lead batteries can provide valuable insights regarding this topic. In a previous study, non-invasive electrical testing was used to objectively determine the reasons for failure and the lifetime of individual batteries. By identifying all of the potential failure mechanisms, the Latin hypercube sampling method was found to effectively reduce the required sample size. To ensure sufficient confidence in validating diagnostic algorithms and calculating time-dependent failure rates, all identified aging phenomena must be considered. This study presents a probability distribution of the failure mechanisms that occur in the field, as well as provides insights into potential opportunities, but it also challenges diagnostic approaches for current and future vehicles.
  • Thumbnail Image
    ItemOpen Access
    Elastohydrodynamic simulation of pneumatic sealing friction considering 3D surface topography
    (2022) Bauer, Niklas; Baumann, Matthias; Feldmeth, Simon; Bauer, Frank; Schmitz, Katharina
    This contribution presents an elastohydrodynamic lubrication (EHL) model for pneumatic spool valves. For an accurate estimation of the transient friction of this tribological sealing system, the surface topography of the cylindrical sealing counterfaces of the valve housings are measured and analyzed with an optical surface measurement instrument. Based on the surface topography data, tribological properties and flow factors of the system are derived. It has been found that the consideration of the surface topography has a significant influence on the simulation results of the EHL model, lowering the calculated friction force by up to 20 %.
  • Thumbnail Image
    ItemOpen Access
    Modeling the pumping behavior of macroscopic lead structures on shaft counterfaces of rotary shaft seals
    (2023) Engelfried, Maximilian; Haffner, Georg; Baumann, Matthias; Bauer, Frank
    The leak tightness of the sealing system rotary shaft seal is based on the formation of an active back-pumping effect of the sealing ring. Here, the sealing ring pumps the fluid in the sealing gap back into the housing. However, this active sealing mechanism is disturbed by so-called “lead structures”. Lead structures include all types of directional structures on the sealing counterface which create rotation-dependent axial fluid pumping. Lead-affected sealing counterfaces can thus cause leakage or insufficient lubrication of the sealing contact. To ensure leak tightness, lead must be avoided or tolerated. This article investigates how different structural characteristics of lead affect the amount of fluid pumped by the shaft surface. For this purpose, 26 shafts are subjected to surface analyzing methods and an experimental pumping rate test. The interaction of various geometric features of the lead structures and their combined effect on the pumping capacity is modeled based on the measured data. Appropriated correlation models are discussed and relationships between shaft lead and its pumping effect are shown. The aim is to estimate shaft pumping rates based on surface measurements in future. The results contribute to the derivation of measurable tolerance values for lead and to the prevention of leakage.
  • Thumbnail Image
    ItemOpen Access
    Assessment of the Lubricity of Grease‐Sealing Rotary Shaft Seals Based on Grease Properties
    (2022) Hahn, Susanne; Feldmeth, Simon; Bauer, Frank
    Grease‐lubricated sealing systems have an increased risk of starved lubrication. For this work, the lubricity of 23 greases in a rotary shaft sealing system was evaluated with a new test and evaluation method. The lubricity was then correlated with rheological and other grease properties. These grease properties are either available by the data sheet or can be measured with low effort. The results of the correlation allow a preselection of greases which are expected to lubricate rotary shaft seals well. This can support manufacturers and users in considering the lubrication of the sealing system early in the development process.
  • Thumbnail Image
    ItemOpen Access
    Wellendichtringe aus PTFE-Compound - ein Werkstoff mit besonderem Betriebsverhalten
    (2016) Schiefer, Felix; Gölz, Jan; Bauer, Frank; Haas, Werner
  • Thumbnail Image
    ItemOpen Access
    Multiscale structural mechanics of rotary shaft seals : numerical studies and visual experiments
    (2023) Grün, Jeremias; Gohs, Marco; Bauer, Frank
    Although rotary shaft seals have been used successfully in many industrial applications for decades, their tribological behavior is still not completely understood. In-depth knowledge of the structural mechanics is essential for the design and optimization of such sealing systems. High complexity results from the multiscale interactions in the tribological system rotary shaft seal. Large macroscopic deformations occur due to the hyperelastic material behavior of elastomers coupled with microscopic tangential distortions of the sealing edge surface in the contact area. This paper includes both numerical and experimental studies on the tribological behavior of rotary shaft seals. A multiscale finite element model provides the simulation of the macroscopic deformations and the microscopic displacements. A test rig equipped with a hollow glass shaft enables in situ visual contact analyses, qualitative determinations of pressure distributions and quantitative measurements of elastomer surface distortions. The optical phenomenon of frustrated total internal reflection enables qualitative evaluations of the pressure distribution. Particle image velocimetry (PIV) is employed to quantify the tangential distortions. The test rig enables the measurement of the friction torque with the same configuration. The results of the numerical and experimental investigations for the radial load, friction torque and tangential distortions are compared and discussed. This serves to validate the simulation methods and the correlation of the measured parameters. This finally results in a solid and validated basis for further tribological investigations of rotary shaft seals.
  • Thumbnail Image
    ItemOpen Access
    Reliability as a key driver for a sustainable design of adaptive load-bearing structures
    (2022) Efinger, Dshamil; Ostertag, Andreas; Dazer, Martin; Borschewski, David; Albrecht, Stefan; Bertsche, Bernd
    The consumption of construction materials and the pollution caused by their production can be reduced by the use of reliable adaptive load-bearing structures. Adaptive load-bearing structures are able to adapt to different load cases by specifically manipulating internal stresses using actuators installed in the structure. One main aspect of quality is reliability. A verification of reliability, and thus the safety of conventional structures, was a design issue. When it comes to adaptive load-bearing structures, the material savings reduce the stiffness of the structure, whereby integrated actuators with sensors and a control take over the stiffening. This article explains why the conventional design process is not sufficient for adaptive load-bearing structures and proposes a method for demonstrating improved reliability and environmental sustainability. For this purpose, an exemplary adaptive load-bearing structure is introduced. A linear elastic model, simulating tension in the elements of the adaptive load-bearing structure, supports the analysis. By means of a representative local load-spectrum, the operating life is estimated based on Woehler curves given by the Eurocode for the critical notches. Environmental sustainability is increased by including reliability and sustainability in design. For an exemplary high-rise adaptive load-bearing structure, this increase is more than 50%.
  • Thumbnail Image
    ItemOpen Access
    Parameter assessment for reliability modeling of machine components using heuristic screening
    (2023) Arndt, Marco; Dazer, Martin; Raither, Wolfram; Bertsche, Bernd
    For the investigation of influence of various parameters on properties and outputs of components or systems, Design of Experiments (DOE) offers the most efficient approach to create a comprehensive empirical insight into product performance. However, especially if product lifetime is treated as the investigation objective, the main focus of attention must be placed on the efficiency of testing - if only to comply with the principle of DOE, even before testing begins. Without actual test runs, a pre-selection of relevant factors influencing the target quantity can be performed here and strategically adjusted in scale compared to the subsequent method. In this work, common heuristic tools and methods are analyzed and evaluated with respect to a deliberate preselection of influencing factors versus the challenges in lifetime testing and degradation behaviors. Several factors as well as their interactions are taken into account to achieve this. For this purpose, these methods are partially extended and adapted in their focus in order to finally be made applicable in a suitable procedure. An illustration of this is also provided in a selected use case with limited empirical and experimental prior-knowledge, in which a sample of relevant influences is identified through qualitative heuristic decision making with respect to parameters that influence product lifetime.
  • Thumbnail Image
    ItemOpen Access
    Multiphase conjugate heat transfer analyses on the assembly situation of rotary shaft seals
    (2023) Hannss, Jacqueline; Grün, Jeremias; Olbrich, Christoph; Feldmeth, Simon; Bauer, Frank
    Rotary shaft seals prevent the exchange of fluid at shaft passages. Their function and service life depend decisively on the temperature in the contact area between the sealing edge and the shaft. Since the temperature depends on both the generation of frictional heat in the contact area and the heat transfer to the surrounding sealing system, the design of the sealing system is crucial. Within the scope of this work, multiphase conjugate heat-transfer analyses were performed considering different assembly situations. The computed results were presented and contrasted to experimental data. This resulted in a valid model for predicting the temperature in the sealing system, which provided insight into the influence of the sealing surroundings on the contact temperature.