Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
17 results
Search Results
Item Open Access Mass-producible micro-optical elements by injection compression molding and focused ion beam structured titanium molding tools(2020) Ristok, Simon; Roeder, Marcel; Thiele, Simon; Hentschel, Mario; Guenther, Thomas; Zimmermann, André; Herkommer, Alois; Giessen, HaraldItem Open Access A 10 V transfer standard based on low-noise solid-state Zener voltage reference ADR1000(2024) Bülau, André; Walter, Daniela; Zimmermann, AndréVoltage standards are widely used to transfer volts from Josephson voltage standards (JVSs) at national metrology institutes (NMIs) into calibration labs to maintain the volts and to transfer them to test equipment at production lines. Therefore, commercial voltage standards based on Zener diodes are used. Analog Devices Inc. (San Jose, CA, USA), namely, Eric Modica, introduced the ADR1000KHZ, a successor to the legendary LTZ1000, at the Metrology Meeting 2021. The first production samples were already available prior to this event. In this article, this new temperature-stabilized Zener diode is compared to several others as per datasheet specifications. Motivated by the superior parameters, a 10 V transfer standard prototype for laboratory use with commercial off-the-shelf components such as resistor networks and chopper amplifiers was built. How much effort it takes to reach the given parameters was investigated. This paper describes how the reference was set up to operate it at its zero-temperature coefficient (z.t.c.) temperature and to lower the requirements for the oven stability. Furthermore, it is shown how the overall temperature coefficient (t.c.) of the circuit was reduced. For the buffered Zener voltage, a t.c. of almost zero, and with amplification to 10 V, a t.c. of <0.01 µV/V/K was achieved in a temperature span of 15 to 31 °C. For the buffered Zener voltage, a noise of ~584 nVp-p and for the 10 V output, ~805 nVp-p were obtained. Finally, 850 days of drift data were taken by comparing the transfer standard prototype to two Fluke 7000 voltage standards according to the method described in NBS Technical Note 430. The drift specification was, however, not met.Item Open Access Direct processing of PVD hard coatings via focused ion beam milling for microinjection molding(2023) Ruehl, Holger; Guenther, Thomas; Zimmermann, AndréHard coatings can be applied onto microstructured molds to influence wear, form filling and demolding behaviors in microinjection molding. As an alternative to this conventional manufacturing procedure, “direct processing” of physical-vapor-deposited (PVD) hard coatings was investigated in this study, by fabricating submicron features directly into the coatings for a subsequent replication via molding. Different diamondlike carbon (DLC) and chromium nitride (CrN) PVD coatings were investigated regarding their suitability for focused ion beam (FIB) milling and microinjection molding using microscope imaging and areal roughness measurements. Each coating type was deposited onto high-gloss polished mold inserts. A specific test pattern containing different submicron features was then FIB-milled into the coatings using varied FIB parameters. The milling results were found to be influenced by the coating morphology and grain microstructure. Using injection–compression molding, the submicron structures were molded onto polycarbonate (PC) and cyclic olefin polymer (COP). The molding results revealed contrasting molding performances for the studied coatings and polymers. For CrN and PC, a sufficient replication fidelity based on AFM measurements was achieved. In contrast, only an insufficient molding result could be obtained for the DLC. No abrasive wear or coating delamination could be found after molding.Item Open Access Open-eco-innovation for SMEs with pan-European key enabling technology centres(2020) Civelek, Faruk; Kulkarni, Romit; Fritz, Karl-Peter; Meyer, Tanja; Troulos, Costas; Guenther, Thomas; Zimmermann, AndréThe project “key enabling technologies for clean production” (KET4CP), which is supported by the European Commission, has the aim to connect small and medium-sized enterprises (SME) and Technology Centres (TC) for cleaner, greener and more efficient production. Within this context, SMEs and TCs across Europe work together to establish an open-innovation network and to raise awareness in productivity and environmental performance. This article presents how an open European network of TCs opens its innovation process to support SMEs to become cleaner, greener and more efficient. Furthermore, this article shows how the TCs and SMEs become a part of the open-eco-innovation platform in clean production and how successful the open-eco-innovation process of different European countries is. We revealed that a pan-European open innovation process for eco-innovations with TCs for key enabling technologies (KET TCs) and Enterprise Europe Network partners (EEN) is a successful approach for SMEs that want to produce and develop cleaner products. An application example is mentioned, in which TCs from different European countries have contributed to developing a product of a SME for energy harvesting. The SME, together with the TCs, developed a generator that is installed in city-level water supply pipes and so, it is outstanding in its application. This innovative application is also described in this article.Item Open Access Characterization of a PCB based pressure sensor and its joining methods for the metal membrane(2021) Schwenck, Adrian; Grözinger, Tobias; Guenther, Thomas; Schumacher, Axel; Schuhmacher, Dietmar; Werum, Kai; Zimmermann, AndréThe collection and analysis of industrial Internet of Things (IIoT) data offer numerous opportunities for value creation, particularly in manufacturing industries. For small and medium-sized enterprises (SMEs), many of those opportunities are inaccessible without cooperation across enterprise borders and the sharing of data, personnel, finances, and IT resources. In this study, we suggest so-called data cooperatives as a novel approach to such settings. A data cooperative is understood as a legal unit owned by an ecosystem of cooperating SMEs and founded for supporting the members of the cooperative. In a series of 22 interviews, we developed a concept for cooperative IIoT ecosystems that we evaluated in four workshops, and we are currently implementing an IIoT ecosystem for the coolant management of a manufacturing environment. We discuss our findings and compare our approach with alternatives and its suitability for the manufacturing domain.Item Open Access Injection molding of encapsulated diffractive optical elements(2023) Wagner, Stefan; Treptow, Kevin; Weser, Sascha; Drexler, Marc; Sahakalkan, Serhat; Eberhardt, Wolfgang; Guenther, Thomas; Pruss, Christof; Herkommer, Alois; Zimmermann, AndréMicrostructuring techniques, such as laser direct writing, enable the integration of microstructures into conventional polymer lens systems and may be used to generate advanced functionality. Hybrid polymer lenses combining multiple functions such as diffraction and refraction in a single component become possible. In this paper, a process chain to enable encapsulated and aligned optical systems with advanced functionality in a cost-efficient way is presented. Within a surface diameter of 30 mm, diffractive optical microstructures are integrated in an optical system based on two conventional polymer lenses. To ensure precise alignment between the lens surfaces and the microstructure, resist-coated ultra-precision-turned brass substrates are structured via laser direct writing, and the resulting master structures with a height of less than 0.002 mm are replicated into metallic nickel plates via electroforming. The functionality of the lens system is demonstrated through the production of a zero refractive element. This approach provides a cost-efficient and highly accurate method for producing complicated optical systems with integrated alignment and advanced functionality.Item Open Access Characterization of hermetically sealed metallic feedthroughs through injection-molded epoxy-molding compounds(2021) Haybat, Mehmet; Guenther, Thomas; Kulkarni, Romit; Sahakalkan, Serhat; Grözinger, Tobias; Rothermel, Thilo; Weser, Sascha; Zimmermann, AndréElectronic devices and their associated sensors are exposed to increasing mechanical, thermal and chemical stress in modern applications. In many areas of application, the electronics are completely encapsulated with thermosets in a single process step using injection molding technology, especially with epoxy molding compounds (EMC). The implementation of the connection of complete systems for electrical access through a thermoset encapsulation is of particular importance. In practice, metal pin contacts are used for this purpose, which are encapsulated together with the complete system in a single injection molding process step. However, this procedure contains challenges because the interface between the metallic pins and the plastic represents a weak point for reliability. In order to investigate the reliability of the interface, in this study, metallic pin contacts made of copper-nickel-tin alloy (CuNiSn) and bronze (CuSn6) are encapsulated with standard EMC materials. The metal surfaces made of CuNiSn are further coated with silver (Ag) and tin (Sn). An injection molding tool to produce test specimens is designed and manufactured according to the design rules of EMC processing. The reliability of the metal-plastic interfaces are investigated by means of shear and leak tests. The results of the investigations show that the reliability of the metal-plastic joints can be increased by using different material combinations.Item Open Access Feasibility study of an automated assembly process for ultrathin chips(2020) Janek, Florian; Saller, Ebru; Müller, Ernst; Meißner, Thomas; Weser, Sascha; Barth, Maximilian; Eberhardt, Wolfgang; Zimmermann, AndréThis paper presents a feasibility study of an automated pick-and-place process for ultrathin chips on a standard automatic assembly machine. So far, scientific research about automated assembly of ultrathin chips, with thicknesses less than 50 µm, is missing, but is necessary for cost-effective, high-quantity production of system-in-foil for applications in narrow spaces or flexible smart health systems applied in biomedical applications. Novel pick-and-place tools for ultrathin chip handling were fabricated and a process for chip detachment from thermal release foil was developed. On this basis, an adhesive bonding process for ultrathin chips with 30 µm thickness was developed and transferred to an automatic assembly machine. Multiple ultrathin chips aligned to each other were automatically placed and transferred onto glass and polyimide foil with a relative placement accuracy of ±25 µm.Item Open Access Feasibility study of soft tooling inserts for injection molding with integrated automated slides(2021) Vieten, Tobias; Stahl, Dennis; Schilling, Peter; Civelek, Faruk; Zimmermann, AndréThe production of injection-molding prototypes, e.g., molded interconnect devices (MID) prototypes, can be costly and time-consuming due to the process-specific inability to replace durable steel tooling with quicker fabricated aluminum tooling. Instead, additively manufactured soft tooling is a solution for the production of small quantities and prototypes, but producing complex parts with, e.g., undercuts, is avoided due to the necessity of additional soft tooling components. The integration of automated soft slides into soft tooling has not yet been investigated and poses a challenge for the design and endurance of the tooling. The presented study covers the design and injection-molding trial of soft tooling with integrated automated slides for the production of a complex MID prototype. The design further addresses issues like the alignment of the mold components and the sealing of the complex parting plane. The soft tooling was additively manufactured via digital light processing from a silica-filled photopolymer, and 10 proper parts were injection-molded from a laser-direct structurable glass fiber-filled PET+PBT material before the first damage on the tooling occurred. Although improvements are suggested to enhance the soft tooling durability, the designed features worked as intended and are generally transferable to other part geometries.Item Open Access Assembly of surface-mounted devices on flexible substrates by isotropic conductive adhesive and solder and lifetime characterization(2022) Saleh, Rafat; Schütt, Sophie; Barth, Maximilian; Lang, Thassilo; Eberhardt, Wolfgang; Zimmermann, AndréThe assembly of passive components on flexible electronics is essential for the functionalization of circuits. For this purpose, adhesive bonding technology by isotropic conductive adhesive (ICA) is increasingly used in addition to soldering processes. Nevertheless, a comparative study, especially for bending characterization, is not available. In this paper, soldering and conductive adhesive bonding of 0603 and 0402 components on flexible polyimide substrates is compared using the design of experiments methods (DoE), considering failure for shear strength and bending behavior. Various solder pastes and conductive adhesives are used. Process variation also includes curing and soldering profiles, respectively, amount of adhesive, and final surface metallization. Samples created with conductive adhesive H20E, a large amount of adhesive, and a faster curing profile could achieve the highest shear strength. In the bending characterization using adhesive bonding, samples on immersion silver surface finish withstood more cycles to failure than samples on bare copper surface. In comparison, the samples soldered to bare copper surface finish withstood more cycles to failure than the soldered samples on immersion silver surface finish.