Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
4 results
Search Results
Item Open Access Die Spaltung von Arylether-Bindungen durch initiale Dioxygenierung: Grundlage des bakteriellen Dioxinabbaus(1991) Engesser, Karl-Heinrich; Strubel, Volker; Kirchner, S.; Schestag, S.; Schulte, P.; Knackmuss, Hans-JoachimBei der Untersuchung des bakteriellen Abbaus von Arylether-Modellsubstraten wie 2-Alkoxybenzoat, Carboxybiphenylether und Dibenzofuran wurde ein grundlegender Mechanismus für die Spaltung von Aryletherbindungen aufgedeckt. Demnach bewirken Dioxygenase-Enzyme unter Einführung zweier Hydroxylgruppen die Überführung von Ether- in Hemiacetalbindungen. Diese instabilen Hemiacetale reagieren unter Rearomatisierung zu aliphatischen Alkoholen und/oder Phenolverbindungen ab. Enzyme dieses Typs sind auch in der Lage, Dioxine zu spalten.Item Open Access 3-(2-hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361(1991) Strubel, Volker; Engesser, Karl-Heinrich; Fischer, Peter; Knackmuss, Hans-JoachimBrevibacterium sp. strain DPO 1361 oxygenates dibenzofuran in the unusual angular position. The 3-(2-hydroxyphenyl)catechol thus generated is subject to meta ring cleavage in the proximal position, yielding 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienoic acid, which is hydrolyzed to 2-oxo-4-pentenoate and salicylate by 2-hydroxy-6-oxo-6-phenyl-2,4-hexadienoic acid hydrolase. The proximal mode of ring cleavage is definitely established by isolation and unequivocal structural characterization of a cyclization product of 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienoic acid, i.e., 3-(chroman-4-on-2-yl)pyruvate.Item Open Access Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran(1989) Engesser, Karl-Heinrich; Strubel, Volker; Christoglou, Konstantinos; Fischer, Peter; Rast, Hans G.Two dibenzofuran degrading bacteria, Brevibacterium strain DPO 1361 and strain DPO 220, were found to utilize fluorene as sole source of carbon and energy. Cells which were grown on dibenzofuran, transformed fluorene into a number of products. For five of the seven metabolites isolated, the structure could be established unequivocally. Accumulation of one metabolite, 1,10-dihydroxy-1, 10-dihydrofluoren-9-one, indicated the presence of a novel type of dioxygenase, attacking polynuclear aromatic systems in the unusual angular position. Dibenzofuran degradation is proposed to likewise proceed via initial angular dioxygenation. Only aryl oxygen ether bond, which normally is extremely stable, is thus transformed to a hemiacetal. After spontaneous cleavage and subsequent rearomatization by dehydration, 2,2′,3-trihydroxybiphenyl [3-(2-hydroxyphenyl)-catechol] thus results as the immediate product of the first enzymatic reaction in the degradation sequence.Item Open Access Degradation of fluorene by Brevibacterium sp. strain DPO 1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one(1994) Trenz, Stefan Peter; Engesser, Karl-Heinrich; Fischer, Peter; Knackmuss, Hans-JoachimAngular dioxygenation has been established as the crucial step in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361 (V. Strubel, K. H. Engesser, P. Fischer, and H.-J. Knackmuss, J. Bacteriol. 173:1932-1937, 1991). The same strain utilizes biphenyl and fluorene as sole sources of carbon and energy. The fluorene degradation sequence is proposed to be initiated by oxidation of the fluorene methylene group to 9-fluorenol. Cells grown on fluorene exhibit pronounced 9-fluorenol dehydrogenase activity. Angular dioxygenation of the 9-fluorenone thus formed yields 1,10-dihydro-1,10-dihydroxyfluoren-9-one (DDF). A mechanistic model is presented for the subsequent C-C bond cleavage by an NAD(+)-dependent DDF dehydrogenase, acting on the angular dihydrodiol. This enzyme was purified and characterized as a tetramer of four identical 40-kDa subunits. The following Km values were determined: 13 microM for DDF and 65 microM for 2,3-dihydro-2,3-dihydroxybiphenyl. The enzyme also catalyzes the production of 3-(2'-carboxyphenyl)catechol, which was isolated, and structurally characterized, in the form of the corresponding lactone, 4-hydroxydibenzo-(b,d)-pyran-6-one. Stoichiometry analysis unequivocally demonstrates that angular dioxygenation constitutes the principal pathway in Brevibacterium sp. strain DPO 1361.