Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
2 results
Search Results
Item Open Access Remarkable enhancement of catalytic activity of Cu‐complexes in the electrochemical hydrogen evolution reaction by using triply fused porphyrin(2022) Chandra, Shubhadeep; Singha Hazari, Arijit; Song, Qian; Hunger, David; Neuman, Nicolás. I.; Slageren, Joris van; Klemm, Elias; Sarkar, BiprajitA bimetallic triply fused copper(II) porphyrin complex (1) was prepared, comprising two monomeric porphyrin units linked through β-β, meso-meso, β′-β′ triple covalent linkages and exhibiting remarkable catalytic activity for the electrochemical hydrogen evolution reaction in comparison to the analogous monomeric copper(II) porphyrin complex (2). Electrochemical investigations in the presence of a proton source (trifluoroacetic acid) confirmed that the catalytic activity of the fused metalloporphyrin occurred at a significantly lower overpotential (≈320 mV) compared to the non‐fused monomer. Controlled potential electrolysis combined with kinetic analysis of catalysts 1 and 2 confirmed production of hydrogen, with 96 and 71 % faradaic efficiencies and turnover numbers of 102 and 18, respectively, with an observed rate constant of around 107 s-1 for the dicopper complex. The results thus firmly establish triply fused porphyrin ligands as outstanding candidates for generating highly stable and efficient molecular electrocatalysts in combination with earth‐abundant 3d transition metals.Item Open Access Investigating the long-term kinetics of Pd nanoparticles prepared from microemulsions and the Lindlar catalyst for selective hydrogenation of 3-hexyn-1-ol(2024) Tari, Faeze; Hertle, Sebastian; Wang, Hongguang; Fischer, Julian; Aken, Peter A. van; Sottmann, Thomas; Klemm, Elias; Traa, YvonneThe effect of non-saturated corner and edge sites of Pd particles on the long-term selectivity of cis-3-hexen-1-ol in the hydrogenation of 3-hexyn-1-ol was studied in this work. Non-supported Pd agglomerates were synthesized through the microemulsion synthesis route and used at nalkynol/APdratios between 0.08 and 21 mol/m2for the catalytic conversion of 3-hexyn-1-ol for 20 h. The selectivity of the cis-hexenol product increased by reducing the quantity of Pd catalytic sites (increasing the nalkynol/APdratio) without introducing any modifier or doping agent to poison the nonselective sites. Then, Pd aggregates with fused primary particles and, thus, fewer corner and edge sites were produced through thermal sintering of the agglomerates at 473-723 K. By comparing the catalytic performance of the agglomerates and aggregates, it was observed that at a rather similar kinetic behavior (99.99% conversion and 85-89% selectivity to cis-hexenol), the sintered aggregates could stay selective despite a catalytic surface area about seven times larger. This emphasizes the role of low-coordinated edge and corner sites on the final selectivity of the cis product and demonstrates that thermal sintering allows the number of non-selective sites to be reduced without any need for toxic or organic doping agents or modifiers.