Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
2 results
Search Results
Item Open Access Holistic quality model and assessment : supporting decision-making towards sustainable construction using the design and production of graded concrete components as an example(2022) Frost, Deniz; Gericke, Oliver; Di Bari, Roberta; Balangé, Laura; Zhang, Li; Blagojevic, Boris; Nigl, David; Haag, Phillip; Blandini, Lucio; Jünger, Hans Christian; Kropp, Cordula; Leistner, Philip; Sawodny, Oliver; Schwieger, Volker; Sobek, WernerThis paper describes a holistic quality model (HQM) and assessment to support decision-making processes in construction. A graded concrete slab serves as an example to illustrate how to consider technical, environmental, and social quality criteria and their interrelations. The evaluation of the design and production process of the graded concrete component shows that it has advantages compared to a conventional solid slab, especially in terms of environmental performance. At the same time, the holistic quality model identifies potential improvements for the technology of graded concrete. It will be shown that the holistic quality model can be used to (a) consider the whole life cycle in decision-making in the early phases and, thus, make the complexity of construction processes manageable for quality and sustainability assessments and (b) make visible interdependencies between different quality and sustainability criteria, to help designers make better-informed decisions regarding the overall quality. The results show how different quality aspects can be assessed and trade-offs are also possible through the understanding of the relationships among characteristics. For this purpose, in addition to the quality assessment of graded concrete, an overview of the interrelations of different quality characteristics is provided. While this article demonstrates how a HQM can support decision-making in design, the validity of the presented evaluation is limited by the data availability and methodological challenges, specifically regarding the quantification of interrelations.Item Open Access Analysis of the microclimatic and biodiversity-enhancing functions of a living wall prototype for more-than-human conviviality in cities(2023) Bornschlegl, Sebastian; Krause, Pia; Kropp, Cordula; Leistner, PhilipThis study analyzes the growing trend of urban green infrastructures, particularly green façade systems, in terms of their infrastructural relationships between nature and culture and their potential to act as bioclimatic layers mediating between the needs of flora, fauna and human habitation. An interdisciplinary approach is taken by combining the perspectives of social and engineering sciences to discuss the contribution of green façade systems for more-than-human conviviality in cities. Green infrastructures can support this endeavor by enabling functions that help to integrate the heterogeneity typical for semi-natural structures into urban ones, especially regarding microclimatic and biodiversity-enhancing functions. The theoretical distinction between “gray”, “green”, and “revolutionary” infrastructure is used to differentiate between conventional and posthumanist conceptualizations of urban naturecultures. The performance of the UNA TERRA living wall prototype as a green and revolutionary infrastructure is evaluated. The results show that the living wall has beneficial microclimatic effects and adds a heterogeneous habitat structure that supports biodiversity in the urban context. By adhering to “egalitarian humility” in design, the uncertainty and openness of more-than-human conviviality are acknowledged. The study finds that green infrastructures such as green façade systems can fulfill the criteria of revolutionary infrastructure if the contribution to local biodiversity and structural complexity is prioritized and the heterogeneous interrelations between human and non-human actors are taken into account.