Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
106 results
Search Results
Item Open Access Mobile Robotik in der bandsynchronen Montage zur flexiblen Mensch-Roboter-Interaktion(Stuttgart : Fraunhofer Verlag, 2019) Bix, Johannes; Verl, Alexander (Univ.-Prof. Dr.-Ing. Dr. h.c. mult.)Die sich wandelnden Anforderungen der Märkte sowie der Produktionsfaktoren in der Automobilindustrie zwingen diese ihre Produktionssysteme weiterzuentwickeln und an die zukünftigen Rahmenbedingungen anzupassen. Der Einsatz mobiler Robotik zur flexiblen Mensch-Roboter-Interaktion in der bandsynchronen Montage schafft die Voraussetzungen für Antworten auf die Herausforderungen in der Produktion von morgen und legt den Grundstein für zukünftige Produktionskonzepte. Die Realisierung in der bandsynchronen Montage stellt besondere Anforderungen an die mobile Robotik. Diese werden auf Basis von untersuchten Anwendungsfällen aus der Montage der Automobilindustrie in einem Anforderungskatalog zusammengetragen und die spezifischen Herausforderungen abgeleitet. Für Betreiber von starr verketteten Produktionssystemen steht neben der technischen Realisierung dieser Herausforderungen vor allem die Gesamtverlässlichkeit der Produktion im Vordergrund. Wesentliche, u.a. experimentell bestätigte Einflussfaktoren auf die Verlässlichkeit eines mobilen Roboters in der bandsynchronen Montage sind die Sicherheit und Zuverlässigkeit. Mit diesem Fokus wird für die bandsynchrone Montage in der Automobilindustrie ein katalogbasiertes Reaktionsverfahren entwickelt, das mithilfe der kognitiven Fähigkeiten des Menschen, aus einer integrierten Risikobeurteilung für Sicherheit und Zuverlässigkeit, vorbeugende Reaktionen für den mobilen Roboter ableitet. Diese sollen den Übergang des Roboters in einen sicheren Zustand - mit möglichst geringen Anforderungen an die mobile Rechenleistung - vorbeugend vermeiden und die geforderte Verfügbarkeit des verketteten Produktionssystems ermöglichen. Hierbei greift das Reaktionsverfahren nicht in die aus der Sicherheitsbeurteilung festgelegten technischen Schutzmaßnahmen ein. Die vorläufige Identifikation von Reaktionen ist aufgrund der bekannten Arbeitsabläufe und der für den industriellen Einsatz ohnehin durchzuführenden Sicherheitsbeurteilung in der Montage möglich. Die Verbesserung der Verfügbarkeit wird im Anschluss unter Laborbedingungen und in der bandsynchronen Montage experimentell nachgewiesen.Item Open Access Entwicklung eines robusten Verfahrens zur Farbbestimmung von Zähnen auf Basis spektraler Daten(2014) Pflüger, Marius; Verl, Alexander (Univ.-Prof. Dr.-Ing. Dr. h. c. mult.)In der heutigen Gesellschaft hat das Aussehen einen immer größeren Stellenwert. Entsprechend kritisch werden deshalb unpassende Farbausprägungen beim Zahnersatz gesehen. In der Praxis wird die Zahnfarbe hierfür meist visuell mithilfe von Farbringen bestimmt, was jedoch fehleranfällig ist. Diese Arbeit befasst sich deshalb mit der Entwicklung eines Verfahrens zur automatischen Bestimmung der Zahnfarbe mit Hilfe spektraler Messdaten sowie der Integration in den spektralen Smart-Sensor VITA Easyshade. Kernelement ist die Entwicklung eines mehrstufigen Prognosemodells für die Zahnfarbe auf Basis von künstlichen Neuronalen Netzen, welches anhand realer Messdaten trainiert wird. Als vorgelagertes Verfahren wurde ausserdem eine Methode entwickelt, um die realen Messdaten hinsichtlich Ihrer Tauglichkeit für das Modelltraining automatisch zu bewerten und inkonsistente Daten ausschleusen zu können. Zur Steigerung der Ergebnisqualität wurde für die Prognoseergebnisse zudem einePlausibilitätsprüfung durch Nachbarschaften im Farbraum konzipiert und umgesetzt. Zur Evaluierung der ausgewählten Lösungsansätze konnte im Rahmen der Arbeit auf fast 4000 spektrale Messungen an Zähnen von Probanden zurückgegriffen werden. Die Validierung des Verfahrens zeigte, dass anhand definierter Kriterien die Prognosegüte im Vergleich zu herkömmlichen Verfahren um knapp 40% gesteigert werden konnte.Item Open Access iWindow - Intelligentes Maschinenfenster(Düsseldorf : VDI Verlag, 2018) Sommer, Philipp; Verl, Alexander; Kiefer, Manuel; Rahäuser, Raphael; Müller, Sebastian; Brühl, Jens; Gras, Michael; Berckmann, Eva; Stautner, Marc; Schäfer, D.; Schotte, Wolfgang; Do-Khac, Dennis; Neyrinck, Adrian; Eger, Ulrich; Sommer, PhilippDas Verbundforschungsprojekt iWindow: Intelligentes Maschinenfenster beschäftigte sich mit der visuellen Unterstützung von Maschinenbedienern an Werkzeugmaschinen. Diese konnten bisher nur auf wenige bis keine Systeme, die sie bei ihren täglichen Aufgaben direkt an der Werkzeugmaschine unterstützen, zurückgreifen. Das Forschungsprojekt verbindet reale und virtuelle Welt in der Werkzeugmaschine durch Technologien wie Virtual und Augmented Reality, digitaler Zwilling, Simulation und Mehrwertdienste. Durch Nutzung jeweils für die aktuelle Arbeitssituation passender Dienste, werden Mitarbeiter befähigt, sich an die steigende Individualisierung der Produkte und die flexiblere Produktion anzupassen. Kunden und Geschäftspartner werden durch die Möglichkeit eigene mehrwertgenerierende Dienste zu entwickeln und anderen Anwendern zur Verfügung zu stellen in den Wertschöpfungsprozess eingebunden. Diese Publikation beleuchtet die im Rahmen des Forschungsprojekts erarbeiteten Ergebnisse hinsichtlich für ein intelligentes Maschinenfenster benötigter Technologien und Entwicklungen.Item Open Access Untersuchung von Antrieben mit Kunststoff-Faserseilen für den Einsatz in Leichtbau-Gelenkarmrobotern(2013) Rost, Arne; Verl, Alexander (Univ.-Prof. Dr.-Ing. Dr. h.c. mult.)Das erste Ziel dieser Arbeit ist die Bestimmung der Einsatztauglichkeit und Dauerhaltbarkeit von hochfesten Kunststoff-Faserseilen, z.B. aus High Modulus Polyethylene (HMPE), bei deren Einsatz mit engen Biegeradien in Seilzugantrieben wie dem DoHelix- oder Verdrill-Muskel (StMA). Aufbauend auf dieser Untersuchung und der Betrachtung ähnlicher Antriebskonzepte soll als zweites Ziel ein neues Konzept für einen Seilzugantrieb mit für die Servicerobotik geeigneten Charakteristika generiert werden. Dieser Antrieb soll als drittes Ziel der Arbeit prototypisch in einem Leichtbau-Gelenkarmroboter (LGR) zum Einsatz gebracht und validiert werden. Die Analyse zeigt, dass hochfeste Kunststoff-Faserseile bis dato nicht mit engen Biegeradien zum Einsatz kommen. Weiterhin wird festgestellt, dass nur wenige Untersuchungen zu dünnen, hochfesten Kunststoff-Faserseilen mit Durchmessern zwischen 1 mm und 2 mm durchgeführt wurden. Der Bedarf für experimentelle Reihenuntersuchungen wird abgeleitet. Gleichzeitig wird verdeutlicht, dass viele verschiedene Ansätze für Leichtbau-Gelenkarmroboter und deren Antriebe existieren, diese aber zumeist kostenintensiv sind und somit einen Großteil der Hardwarekosten eines mobilen oder stationären Serviceroboters ausmachen. Auf diesen Analysen aufbauend kann ein bis dato nicht adressierter Bereich für die Entwicklung eines neuen, bidirektional-wirkenden Antriebskonzepts mit Seilzügen identifiziert werden. Im Rahmen der Generierung des auf dem DoHelix-Muskel aufbauenden, bidirektional wirkenden QuadHelix-Antriebskonzepts werden Grundlagen zur Auslegung angegeben und der CAD-Entwurf für einen rotatorischen Freiheitsgrad vorgestellt. Die Untersuchungen zur Praxistauglichkeit und Dauerhaltbarkeit des neu generierten QuadHelix-Antriebs und der bereits bestehenden DoHelix- und Verdrill-Muskel-Konzepte werden in einer geeigneten, eigens generierten Testumgebung angegangen. Es werden nach der Erstellung eines Versuchsplans und einer Versuchsstrategie langlaufende Dauerhaltbarkeit-Versuche und kurzlaufende Belastung-Versuche mit unterschiedlichen Seilmaterialien und Zuladungen durchgeführt und anschließend ausgewertet. Für die abschließende Realisierung des Zielsystems eines Leichtbau-Gelenkarmroboters mit vier Freiheitsgraden wird aufbauend auf den hier gefundenen Ergebnissen ein biologisch-inspiriertes Antriebsmodul mit zwei Gelenkachsen entwickelt, das zwei parallel angeordnete QuadHelix-Antriebe zum Einsatz bringt. Wiederum zwei dieser Antriebsmodule, kombiniert mit einem Greifer, ergeben das Zielsystem, mit welchem eine Handhabungsoperation demonstriert wird. Final werden mögliche Ansätze für zukünftige Optimierungen des QuadHelix-Antriebs und des generierten LGRs „ISEALLA 2“ dargestellt und mögliche Folgeprojekte erläutert.Item Open Access Kompensation von Magnetisierungsabweichungen in Permanentmagnet-Synchronmotoren durch selektive Rotormontage(Stuttgart : Fraunhofer Verlag, 2019) Coupek, Daniel; Verl, Alexander (Univ.-Prof. Dr.-Ing. Dr. h.c. mult.)Die Herstellung elektrischer Antriebe für Elektro- und Hybridfahrzeuge entwickelt sich von der heutigen Kleinserienproduktion hin zur Massenproduktion. Optimierte Ansätze der Qualitätssicherung in der Produktion von Verbrennungsmotoren können aufgrund technologischer Unterschiede nicht direkt auf die Produktion von Elektromotoren übertragen werden. Um die heutigen hohen Ausschussraten zu reduzieren, müssen neue Strategien entwickelt werden. Permanentmagnet-Synchronmotoren sind aufgrund ihrer kompakten Bauweise und hohen Leistungsdichte die am häufigsten eingesetzten Antriebe hybrider und elektrischer Fahrzeuge und müssen hohen Qualitäts- und Sicherheitsanforderungen genügen. Die Magnetisierung der Permanentmagnete unterliegt natürlichen Schwankungen, die durch Prozessregelung nicht verhindert werden können, da der Magnetisierungsprozess bereits im Sättigungsbereich durchgeführt wird. Magnetisierungsabweichungen in den Einzelteilen führen direkt zu Streuungen im montierten Rotor. Diese verringern im Betrieb die Leistung des Elektromotors und verursachen Vibrationen, die wiederum Geräuschemissionen und Verschleiß erhöhen. Eine Reparatur der Rotoren sowie der montierten Motoren am Ende der Produktionslinie ist aufgrund der Aufbauart technisch nicht möglich. Aus diesem Grund wird in dieser Arbeit eine Strategie der selektiven Rotormontage entwickelt, die es erlaubt, unvermeidbare Abweichungen der Magnetisierung zu erkennen und in nachfolgenden Prozessschritten zu kompensieren. Durch Ändern der Reihenfolge und Verdrehen der fehlerhaften Einzelteile soll der zusammengebaute Rotor wieder innerhalb der Toleranz liegen und ein möglichst gleichmäßiges Magnetfeld aufweisen. Eine Herausforderung ist hierbei die Entwicklung geeigneter Methoden zur Vorbehandlung der Magnetisierungs- Messwerte mittels Datenreduktion, Merkmalsselektion und –extraktion. Anschließend erfolgt eine Klassifikation der Merkmalsvektoren durch künstliche neuronale Netzwerke, welche die Grundlage der selektiven Optimierung bildet. Ein Fuzzy Inferenz System wird zur Auswahl der idealen Kombination der Einzelteile eingesetzt. Dabei wird Expertenwissen über den Prozess und die geplante Kompensation mittels Fuzzy Regeln in einer Regelbasis gespeichert. Die Methoden zur Datenanalyse, Klassifikation und Optimierung werden in MATLAB implementiert und anhand von experimentellen und simulativen Daten validiert.Item Open Access Modeling techniques and reliable real-time implementation of kinematics for cable-driven parallel robots using polymer fiber cables(Stuttgart : Fraunhofer Verlag, 2017) Schmidt, Valentin Lorenz; Pott, Andreas (Jun.-Prof. Dr.-Ing.)In this thesis, the accuracy of cable-driven parallel robots is investigated by presenting and discussing relevant factors. Models to compensate factors affecting accuracy, including cable properties such as mass, elasticity, creep and ovalization, cable pulleys, and drive trains, are given and applied where necessary. Ovalization was previously ignored in literature, but it is shown to have a significant effect. Methods of estimating the impact of each factor are used to determine a classification for cable-driven parallel robots constructed with plastic fibers. Estimations indicate that some of the factors, such as pulleys, elongation and ovalization are more significant than cable mass, temperature and a non-linear transmission ratio. These findings give an indication of which factors should be modeled first. A focus lies in the real-time capability of the presented models. The incorporation of accuracy factors in the robot controller to improve the robot kinematics is not trivial, particularly for the forward kinematics. Methods for the numerical evaluation of the forward kinematics are thus presented. The most effective improvement is an adapted intersection method for estimating the position from given cable lengths. The intersection method works remarkably well for most geometry types. Further, it is shown that the type of numerical algorithm and value preconditioning affect the proficiency of numerical solvers. The models for improving accuracy are grouped into four architecture types: direct implementation, compensation, offline calculation, and sensor feedback. The direct architecture enables complex control algorithms but is only suitable for a few mathematical models. Compensation is applicable for a wide range of models and has the advantage of retaining reliability. Factors which cannot be compensated in real-time can also be calculated offline, and any factors which have additional measurable parameters need to be incorporated into a feedback control. However, cable forces can also be approximated to achieve a simple elongation compensation. In a practical investigation, the extended models which compensate factors affecting accuracy, are verified for two cable robots. Positional accuracy, positional repeatability, pose drift, posing time and static compliance are tested. For cable robots driven by plastic fiber cables, accuracy scales with size and is 1.38mm and 40.42mm for a robot with a 1.54m and 20.2m diagonal size respectively. The repeatability of the same robots is 0.0806mm and 5.24mm. There is a significant negative correlation between static compliance and accuracy. Improvements through applying extended models are verified. Positional accuracy is improved by 30% when using a simple elongation compensation in the case of the IPAnema 3 cable robot.Item Open Access Modellbasierte Berechnung der Systemeigenschaften von Maschinenstrukturen auf der Steuerung(2012) Sekler, Peter; Verl, Alexander (Prof. Dr.-Ing.)Heutige Entwicklungen in der Maschinentechnik zielen mit zunehmenden Maß darauf ab auch Leichtbautechniken einzusetzen. Dies stellt aber die Maschinenentwickler häufig vor die Problemstellung der verringerten Steifigkeit und Dämpfung der Maschinen durch Verringerung der Masse. Aus Sicht der Steuerungstechnik existieren unterschiedliche Möglichkeiten auftretende Schwingungen der nachgiebigen Maschinenstrukturen zu vermeiden. Einige Schwingungsvermeidungsalgorithmen sind in gängigen industriell eingesetzten NC-Steuerungen integriert. Allerdings benötigen, die Methoden zur Parametrierung die aktuellen Resonanzfrequenzen der Maschine, die je nach Position und Orientierung der Maschinenachsen unterschiedlich ausfallen. Resonanzfrequenzen von Maschinenstrukturen können über die experimentelle modale Analyse oder durch Simulationsmodelle vorab bestimmt werden und der Steuerung als Tabellen zur Verfügung gestellt werden. Die realen, momentanen Resonanzfrequenzen können bei Anregung alternativ auch mit Sensoren, welche in die Maschine integriert sind, ermittelt und berechnet werden. Demgegenüber steht die Performance der Steuerungshardware, die heutzutage hoch genug ist um Resonanzfrequenzen aus Simulationsmodellen auch online auf der Steuerung zu identifizieren. Der Vorteil dieser Methode liegt vor allem darin, dass teure Sensorik und aufwändige Messvorgänge vermieden werden. In der Arbeit wird aus diesen Gründe eine Methodik untersucht, die eine Online-Identifikation von Resonanzfrequenzen anhand von Simulationsmodellen erlaubt. Diese Methode soll neue Möglichkeiten bieten, um bestehende Schwingungsvermeidungsalgorithmen mit Informationen zu versorgen, wodurch eine Verbesserung der Genauigkeit der Maschinen angestrebt wird. Der Fokus der Arbeit liegt dabei auf der schnellen Berechnung von Maschineneigenschaften, welche auf Genauigkeit und Effizienz hin untersucht werden und für die Schwingungsvermeidung verwendet werden.Item Open Access Fehlertolerante numerische Steuerung(2015) Bock, Hans-Peter; Verl, Alexander (Univ.-Prof. Dr.-Ing. Dr. h.c. mult.)Die andauernde Leistungssteigerung von Rechnern nach dem noch geltenden Mooreschen Gesetz ermöglicht computerbasierten numerischen Steuerungen den Einsatz in Anwendungsbereichen, die bisher allein dem Menschen vorbehalten waren. Damit werden numerische Steuerungen vermehrt auch in sicherheitskritischen Anwendungen eingesetzt wie beispielsweise der minimal invasiven Chirurgie. Dieser Anwendungsbereich stellt sehr hohe Anforderungen an die Sicherheit des Assistenzsystems. Aus diesem Grund sind diese Systeme fehlersicher ausgelegt und gewährleisten, dass ein interner Fehler des Systems einen Patienten nicht unmittelbar verletzt. Um dieser Anforderung gerecht zu werden nehmen bestehende Systeme zur Erhöhung der Sicherheit eine Reduktion der Zuverlässigkeit in Kauf. Zukünftig ist dies nicht weiter ausreichend, da bestimmte Operationstechniken bei Ausfall des Assistenzsystems nur durch einen deutlich größeren manuellen Eingriff weitergeführt werden können oder im schlechtesten Fallüberhaupt nicht möglich sind. Eine Aufgabenstellung liegt hierbei darin, eine fehlertolerante numerische Steuerung zu entwerfen, welche den bestehenden Sicherheitsanforderungen gerecht wird und gleichzeitig die Zuverlässigkeit gegenüber bestehenden Systemen deutlich erhöht. Herausfordernd ist dabei, dass möglicherweise in der Steuerung auftretende Fehler zu keiner Konturverletzung der Sollbahn führen dürfen. Diese Arbeit untersucht hierzu bestehende Ansätze zur Erhöhung der Zuverlässigkeit von Systemen sowie ein Operationsassistenzsystem, das die Sicherheit dessen numerischer Steuerung erhöht. Dabei wird der fehlersichere Ansatz des Operationsassistenzsystems um Fehlertoleranz erweitert. Das Ziel ist der Entwurf eines numerischen Steuerungssystems das durch Redundanz auf Basis einer Mehrheitsentscheidung interne Fehler maskieren sowie fehlerhafte redundante Einheiten durch Rekonfiguration ausgliedern kann, so dass keine fehlerhaften Sollwerte ausgegeben werden. Das System weist damitnach außen hin eine fehlerfreie Funktion auf, so dass ein begonnener Bearbeitungsprozess ohne Unterbrechung zu Ende geführt werden kann.Item Open Access Zustandsmodellbasierte, steuerungsnahe Energieverbrauchsoptimierung von Werkzeugmaschinen(Stuttgart : Fraunhofer Verlag, 2017) Eberspächer, Philipp; Verl, Alexander (Univ.-Prof. Dr.-Ing. Dr. h.c. mult.)Ressourceneffizienz und Umweltschutz haben in den letzten Jahren auch für die Industrie deutlich an Bedeutung gewonnen. Der Druck auf Unternehmen bezogen auf die Energieeffizienz in der Fertigung steigt zum einen durch nationale und internationale Richtlinien, durch steigende Strompreise, durch den Wettbewerb, aber auch direkt durch die Erwartungen der Gesellschaft. Um weiterhin wirtschaftlich agieren zu können, verfolgen industrielle Unternehmen das Ziel, ihre Energiekosten zu reduzieren. Speziell beim Betrieb von Werkzeugmaschinen wird vor allem während der Nicht-Produktivzeit elektrische Energie unnötig umgesetzt, da zwar Energiesparmodi dem Stand der Technik entsprechen, diese jedoch nicht effizient aufgerufen werden. Mit dieser Arbeit wird daher das Ziel verfolgt, Zeiten, in denen Werkzeugmaschinen nicht produzieren, energieverbrauchsoptimal zu überbrücken. Es wird eine parametrier-bare, modellbasierte Lösung zur Energieverbrauchsoptimierung für Werkzeugmaschinen während Produktionsunterbrechungen entwickelt. Zunächst wird eine Methode untersucht und entwickelt, die es ermöglicht, ein Betriebszustandsmodell während des Betriebs von Werkzeugmaschinen zur Verbrauchsberechnung und zur Ermittlung des aktuellen Betriebszustands einzusetzen. Um dieses mit deutlich reduziertem Aufwand zu identifizieren und zu parametrieren, wird daraufhin eine Methode zur teilautomatisierten Zustandsmodellerstellung entwickelt, die es zusätzlich ermöglicht Expertenwissen zu integrieren. Das so parametrierte Betriebszustandsmodell kann dann bei der Energieverbrauchsoptimierung eingesetzt werden. Zum Abschluss wird eine Methode zur verbrauchsmodellbasierten Energieverbrauchsoptimierung hergeleitet. Der Optimierungsmethode liegen graphenbasierte Suchalgorithmen bei der Ermittlung der energieverbrauchsoptimalen Betriebszustandssequenzen während Produktionsunterbrechungen zu Grunde. Die Einsetzbarkeit der entwickelten Methoden wird an einer Demonstratormaschine vom Typ Digma HSC600 der Firma Exeron innerhalb eines Steuerungsframeworks validiert.Item Open Access Uncertainty PERMEATED - explainable AI in a condition monitoring framework for industrial assets(Stuttgart : Fraunhofer Verlag, 2024) Lukas, Martin; Verl, Alexander (Univ.-Prof. Dr.-Ing. Dr. h.c. mult.)The first chapter introduces the topic of condition-based maintenance and contextualizes the importance of this technique, especially for critically important, complex and costly systems like machine tools. Condition-based maintenance can be seen as a special case of diagnosis and data analysis. Consequently, the second chapter introduces terms and definitions, which serve as foundation for the following discussion. The third chapter presents the state of research and a detailed review of publications in the context of data-driven diagnostics for condition-based maintenance. Different ideas behind and the purpose of model-based diagnostics, as well as signal-based diagnostics are outlined. Chapter 4 focuses on uncertainty, which is the main challenge in condition-based maintenance. Recommending a maintenance action has potentially costly real-world impacts. It is therefore necessary be aware of the risks of decisions. Uncertainty about the real state of the system seems to be inherent to the task of condition-monitoring. The lack of interpretability and auditability of decisions and the reasons for them are identified as main obstacles for a more widespread adoption of data-driven techniques. Subsequently chapter 5 introduces a diagnostics framework called PERMEATED, which embraces these results and is designed to deal with the existing uncertainties by incorporating them and emphasizing the importance of trust. The application of this framework to a real world application for machine tools is presented. Chapter 6 discusses some existing machine learning approaches for condition-monitoring applications and a applies them to a particular task regarding the dynamic behavior of a machine tool drive axis. Their performance is compared to an alternative, PERMEATED-compatible method, called SLIM. A different approach to satisfy the principles of the PERMEATED diagnostics process is given in the last section of the chapter. Instead of using inherently interpretable machine learning models, this chapter uses so-called explainers to retrieve explanations from opaque machine learning models. Chapter 7 summarizes the results of this thesis with regards to the task of condition monitoring for industrial assets and concludes with the identification of areas, where further research is necessary to make the application of techniques of machine learning more applicable for the task of condition-based maintenance.