Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Holistic quality model and assessment : supporting decision-making towards sustainable construction using the design and production of graded concrete components as an example
    (2022) Frost, Deniz; Gericke, Oliver; Di Bari, Roberta; Balangé, Laura; Zhang, Li; Blagojevic, Boris; Nigl, David; Haag, Phillip; Blandini, Lucio; Jünger, Hans Christian; Kropp, Cordula; Leistner, Philip; Sawodny, Oliver; Schwieger, Volker; Sobek, Werner
    This paper describes a holistic quality model (HQM) and assessment to support decision-making processes in construction. A graded concrete slab serves as an example to illustrate how to consider technical, environmental, and social quality criteria and their interrelations. The evaluation of the design and production process of the graded concrete component shows that it has advantages compared to a conventional solid slab, especially in terms of environmental performance. At the same time, the holistic quality model identifies potential improvements for the technology of graded concrete. It will be shown that the holistic quality model can be used to (a) consider the whole life cycle in decision-making in the early phases and, thus, make the complexity of construction processes manageable for quality and sustainability assessments and (b) make visible interdependencies between different quality and sustainability criteria, to help designers make better-informed decisions regarding the overall quality. The results show how different quality aspects can be assessed and trade-offs are also possible through the understanding of the relationships among characteristics. For this purpose, in addition to the quality assessment of graded concrete, an overview of the interrelations of different quality characteristics is provided. While this article demonstrates how a HQM can support decision-making in design, the validity of the presented evaluation is limited by the data availability and methodological challenges, specifically regarding the quantification of interrelations.
  • Thumbnail Image
    ItemOpen Access
    Path planning for graded concrete element fabrication
    (2023) Blagojevic, Boris; Sawodny, Oliver
    The technology of functionally graded concrete (FGC) is a new methodology in the field of concrete construction, striving for mass savings by adjusting the elements interior design. A promising approach herein is meso-gradation, where concrete hollow spheres are placed inside the formwork before casting the element; this allows up to 50% mass savings without a loss in load-bearing capacity, whilst also ensuring recyclability compared to e.g. bubble decks. In order to prevent damage/displacement of the spheres during automated fabrication, the extruded concrete flow must avoid the spheres, whilst neatly covering the elements area in order to prevent cavities. Both requirements formulate a complex path planning problem that must be solved in order to achieve automated fabrication. In this paper, we propose a method for solving this problem, which is based on theoretical findings on Hamiltonian triangulations. Our approach is based on the idea that the elements area is triangulated, such that all sphere centers are corners of triangles. For each triangle, a smooth path can be planned straightforwardly on a consideration of the geometry, such that the global path is made of a sequence of local ones. This necessitates finding a triangulation that is hamiltonian, i.e. a sequence where all triangles are visited exactly once. To this end, we first present a new class of triangulations and proof their hamiltonicity, followed by an algorithm that generates such triangulations on certain FGC element geometries. This is followed by the local path planning problem, whose special structure with start/end tangential and curvature constraints facilitates the use of a polar coordinate approach.