Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
3 results
Search Results
Item Open Access Learning an approximate model predictive controller with guarantees(2018) Hertneck, MichaelIn this thesis, a supervised learning framework to approximate a model predictive controller (MPC) with guarantees on stability and constraint satisfaction is proposed. The approximate controller has a reduced computational complexity in comparison to standard MPC which makes it possible to implement the resulting controller for systems with a high sampling rate on a cheap hardware. The framework can be used for a wide class of nonlinear systems. In order to obtain closed-loop guarantees for the approximate MPC, a robust MPC (RMPC) with robustness to bounded input disturbances is used which guarantees stability and constraint satisfaction if the input is approximated with a bound on the approximation error. The RMPC can be sampled offline and hence, any standard supervised learning technique can be used to approximate the MPC from samples. Neural networks (NN) are discussed in this thesis as one suitable approximation method. To guarantee a bound on the approximation error, statistical learning bounds are used. A method based on Hoeffding’s Inequality is proposed to validate that the approximate MPC satisfies these bounds with high confidence. This validation method is suited for any approximation method. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the approximated MPC. Within this thesis, an algorithm to obtain automatically an approximate controller is proposed. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem for which we learn a neural network controller that guarantees stability and constraint satisfaction. The combination of robust control and statistical validation can also be used for other learning based control methods to obtain guarantees on stability and constraint satisfaction.Item Open Access Versuchsstand Flexibler Roboter: Modellierung und Beobachterentwurf(2009) Burkhardt, MarkusDiese Arbeit befasst sich mit der Modellbildung und dem Beobachterentwurf eines zweigelenkigen, ebenen Roboters mit flexiblen Verbindungselementen. Der Roboter wird dabei als ein flexibles Mehrkörpersystem betrachtet, um die Elastizitäten in den Verbindungen zu berücksichtigen. Durch die Variation der Anzahl an Moden und durch eine unterschiedliche Berücksichtigung der auftretenden Reibung werden mehrere verschiedene Modelle erstellt und anschließend miteinander verglichen. Um eine Zustandsrückführung zu ermöglichen, wird ein Beobachter entworfen. Dabei kommt ein Extended Kalman Filter zum Einsatz. Dabei gilt die Zielvorgabe, dass das Extended Kalman Filter echtzeitfähig ist. Die Implementierung am Versuchsstand erfolgt als C Mex S-Function. Nachdem verschiedene Varianten miteinander verglichen wurden und die geeignetste Variante gewählt wurde, wird das Konvergenzverhalten überprüft.Item Open Access Stability and performance in transient average constrained Economic Model Predictive Control without terminal constraints(2019) Rosenfelder, MarioWe investigate system theoretic properties of transient average constrained economic model predictive control (MPC) without terminal constraints. We show that the optimal open-loop solution passes by the optimal steady-state for consecutive time instants. Using this turnpike property and suitable controllability conditions, we provide closed-loop performance bounds. Furthermore, stability is proved by combining the rotated value function with an input-to-state (ISS) Lyapunov function of an extended state related to the transient average constraints. The results are illustrated with a numerical example.