Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
29 results
Search Results
Item Open Access Residual stresses in deep-drawn cups made of duplex stainless steel X2CrNiN23-4 : influence of the drawing depth(2021) Simon, Nicola; Erdle, Hannes; Walzer, Stefan; Gibmeier, Jens; Böhlke, Thomas; Liewald, MathiasResidual stress development in deep drawing processes is investigated based on cylindrical cups made of duplex stainless steel sheet. Using a two-scale approach combining finite element modelling with a mean field homogenization scheme the macro residual stresses as well as the phase-specific micro residual stresses regarding the phases ferrite and austenite are calculated for steel X2CrNiN23-4 for various drawing depths. The simulation approach allows for the numerical efficient prediction of the macro and phase-specific micro residual stress in every integration point of the entire component. The simulation results are validated by means of X‑ray diffraction residual stress analysis applied to a deep-drawn cup manufactured using corresponding process parameters. The results clearly indicate that the fast simulation approach is well suited for the numerical prediction of residual stresses induced by deep drawing for the two-phase duplex steel; the numerical results are in good agreement with the experimental data. Regarding the investigated process, a significant influence of the drawing depth, in particular on the evolution of the residual stress distribution in drawing direction, is observed. Considering the appropriate phase-specific strain hardening, the two-scale approach is also well suited for the prediction of phase specific residual stresses on the component level.Item Open Access Kompensationsstrategien von Rückfederungseffekten beim Umformen von hochfesten Stahlblechwerkstoffen(Stuttgart : Institut für Umformtechnik, 2020) Radonjić, Ranko; Liewald, Mathias (Univ.-Prof. Dr.-Ing. Dr. h.c. MBA)Die ständigen Bestrebungen zur Reduzierung der CO2-Emissionen führen in der Automobilindustrie zur höheren Anforderungen an den Karosserieleichtbau. Um diese Anforderungen zu erfüllen, wurde der Schwerpunkt der Entwicklungen der letzten Jahre auf die Reduzierung des Karosseriegesamtgewichts durch den Einsatz von Leichtbauwerkstoffen sowie Blechen mit geringerer Dicke gelegt. Diese Tendenzen führen zu einem verstärkten Einsatz von hoch- und höchstfesten Stahlblechwerkstoffen zur Herstellung von entsprechenden Karosseriestrukturbauteilen mit geringerem Bauteilgewicht im Vergleich zu früheren Baureihen. Solche Bauteile werden in der Regel durch das Tiefziehen oder das ziehende Biegen hergestellt. Nach der Entnahme des Bauteils aus dem Werkzeug nach der durchgeführten Umformung tritt eine Spannungsrelaxation auf, wonach sich ein neues Spannungsgleichgewicht im Bauteil einstellt. Als Ergebnis dieser Spannungsrelaxation tritt die Rückfederung bzw. die dimensionelle Abweichung zwischen dem entlasteten Bauteil und der Referenzgeometrie auf. Dies kann verschiedene Arten der Rückfederung zur Folge haben: Winkeländerung, Zargenkrümmung, Radienänderung und Torsion bzw. Verdrehung von Bauteilzonen. Bei der Herstellung von Karosseriestrukturbauteilen aus hoch- oder höchstfesten Stahlblechwerkstoffen tritt häufig eine hohe Rückfederung von bis zu einigen Zentimetern auf, welche mit derzeit existierenden Maßnahmen nur schwer oder gar nicht erfolgreich während des Umformens oder gar danach kompensiert werden kann. Im Rahmen dieser Arbeit wurden verschiedene Ansätze im Hinblick auf die Reduktion der Rückfederung am Beispiel eines zweifach gekrümmten hutförmigen Bauteils simulativ und experimentell untersucht. Um die erforderliche Genauigkeit der Simulation dabei gewährleisten zu können, wurden zunächst umfangreiche Werkstoffcharakterisierungen der untersuchten Stahlblechwerkstoffe (DP 600, DP 800 und DP 980) durchgeführt. Darüber hinaus erfolgten die Praxisversuche zur Bestimmung des Einflusses der Blechhalterkraft, Geschwindigkeit der Stößelbewegung und Werkzeugradien auf das Rückfederungsverhalten. Basierend auf den dabei erzielten Ergebnissen konnte zunächst festgestellt werden, dass mit der Erhöhung der Festigkeit des eingesetzten Stahlblechs der Erfolg der zuvor genannten Maßnahmen im Hinblick auf die Reduzierung der rückfederungsbedingten Formabweichungen sinkt, und im Fall des Blechwerkstoffs DP 980 sogar fast vernachlässigbar ist. Des Weiteren wurde die Anwendbarkeit von verschiedenen geometrisch basierten Ansätzen mittels einer nach dem Tiefziehen folgenden Nachformoperation im Hinblick auf die Reduzierung der Rückfederung simulativ untersucht. Diese Ansätze beinhalteten vor allem lokale geometrische Änderungen des Bauteils durch Kalibrierung der Radien sowie das Prägen der ebenen und leicht gekrümmten Bauteilbereiche. Dabei wurde festgestellt, dass mit Hilfe solch geometrisch basierter Ansätze der Spannungszustand im Bauteil grundsätzlich lokal beeinflusst werden kann. In diesem Zusammenhang führte der Einsatz des Kalibrierens der Bauteilradien bei gleichzeitigem Prägen der Bauteilzarge zu einer wesentlichen Reduzierung der Rückfederung. Allerdings erfordern solche geometrisch basierten Ansätze häufig signifikante Änderungen der Bauteilgeometrie. Mit dem Ziel, den Spannungszustand im größtmöglichen Bereich des trägerförmigen Bauteils ohne Änderung von dessen Geometrie entsprechend zu beeinflussen, wurde versucht, die Spannungsüberlagerungseffekte mittels gezielt gewählter Werkzeugradien durch wechselseitigen Platineneinlauf während des Tiefziehens zu bewirken. Aufgrund eines solchen wechselseitigen Platineneinlaufes werden jene Werkstückbereiche, welche während des Ziehvorganges in Kontakt mit den Stempelradien kommen, einem mehrmaligen Biegen unterzogen. Dabei werden die beim ersten Biegen über die Blechdicke verursachten Biegespannungen durch das folgende Rückbiegen mit Spannungen mit entgegengesetztem Vorzeichen überlagert, was sich positiv bezüglich der Reduktion der Rückfederung auswirkt. In diesem Zusammenhang wurde in dieser Arbeit auch dargelegt, dass eine optimale Platineneinlaufkinematik definiert werden kann, die zu einer vernachlässigbaren Rückfederung des entlasteten Bauteils führt. Eine solche optimale Platineneinlaufkinematik während des Ziehvorganges wurde am Beispiel eines zweifach gekrümmten hutförmigen Bauteils in Hinblick auf die nahezu vernachlässigbare Rückfederungsmenge erfolgreich belegt. Diesbezüglich wurde die Forschungshypothese nachgewiesen, dass die Rückfederung des Blechteils reduziert bzw. kompensiert werden kann, in dem die während des Umformens im Bauteil verursachten Spannungen mit Spannungen mit entgegengesetzten Vorzeichen überlagert werden. Die in der vorliegenden Arbeit erzielten Ergebnisse stellen einen wichtigen Beitrag für die industrielle Anwendung bzw. Methodenplanung für die Fertigung von trägerförmigen Bauteilen aus hoch- und höchstfesten Stahlblechwerkstoffen dar.Item Open Access Ein Beitrag zur Charakterisierung der Verbindungsfestigkeit von flächigen Mehrschichtverbunden in der Blechumformung(Stuttgart : Institut für Umformtechnik, 2020) Hofmann, Dennis; Liewald, Mathias (Univ.-Prof. Dr.-Ing. Dr. h.c. MBA)In der Automobil- und Luftfahrtindustrie werden verstärkt maßgeschneiderte Produkte bzw. Halbzeuge eingesetzt, um die anspruchsvollen Vorgaben in Bezug auf Leichtbaupotential, Materialeinsparung und Energieeffizienz zu erfüllen. Neben Tailor Welded Blanks und Tailored Rolled Blanks gehören auch die Mehrschichtverbunde zur Gruppe dieser maßgeschneiderten Produkte, welche die Vorteile einer geringen Dichte mit schall- bzw. vibrationsdämpfenden Eigenschaften vereinen. Der Einsatz von Mehrschichtverbunden, insbesondere der der kraft- und stoffschlüssig gefügten Doppelplatinen und Sandwichbleche, findet jedoch derzeit noch wenig Akzeptanz in industriellen Produkten. Der Grund dafür besteht in der bisher unzureichenden Auslegung und Charakterisierung der Verbindungsfestigkeit dieser Halbzeuge. Die Zielsetzung dieser Arbeit besteht daher einerseits in der Charakterisierung und Auslegung der Verbindungsfestigkeit von kraft- und stoffschlüssigen Mehrschichtverbunden in der Blechumformung und anderseits in der systematischen Entwicklung von Möglichkeiten zur Funktionsintegration in kraftschlüssig gefügte Mehrschichtverbunde. Im ersten Teil der Arbeit werden die mechanisch technologischen Kennwerte aus Grund- und Modellversuchen für die numerische Simulation von kraftschlüssigen Mehrschichtverbunden aus Blechen erarbeitet. Diese Kennwerte werden sowohl für die Umformung der Verbunde als auch für die Charakterisierung der Verbindungsfestigkeit verwendet. Für die numerischen Berechnungen des Kraftschlusses zwischen den Bauteilen nach der Umformung werden in diesem Teil der Arbeit insbesondere das tribologische System zwischen den beiden Platinen nach dem Umformen und die kinematische Verfestigung des Blechwerkstoffs charakterisiert. Aufbauend darauf wird die Rückfederungskraft von monolithischen Blechwerkstoffen analytisch, numerisch und experimentell ermittelt, um das Potential zum flächigen Fügen von Platinen durch gemeinsames Umformen, welches als Gemeinsamtiefziehen bezeichnet wird, bewerten zu können. Beim Gemeinsamtiefziehen werden zwei Platinen ohne Verwendung von zusätzlichen Verbindungselementen sowie thermischer und chemischer Verbindung von deren Oberflächen gemeinsam miteinander tiefgezogen, sodass eine flächige Verpressung entstehen kann, wenn die Zargenbereiche senkrecht stehende Flächenanteile aufweisen. Konische Bauteile übertragen beispielsweise keine oder nur geringe Verbindungsfestigkeiten. Die Verbindungsfestigkeit, welche durch eben diese flächige Verpressung durch Gemeinsamtiefziehen entsteht, wird anschließend experimentell analysiert und die werkstoff-, prozess- und bauteiltechnischen Einflussfaktoren werden quantifiziert. Die Verbindungsfestigkeit der gemeinsam tiefgezogenen Mehrschichtverbunde wird weiterhin durch numerische Grundlagenuntersuchungen analysiert, um die erzeugte Verbindungsfestigkeit ohne aufwendige experimentelle Grundsatzuntersuchungen vorhersagen zu können. Grundlage der Charakterisierung der Verbindungsfestigkeit stellen FEM-Berechnungen aus Schalen- und Volumenelementen dar, welche aus einer Mehrstufensimulation aufgebaut werden. Durch strukturmechanische Simulationen kann zusätzlich der Einfluss von der Struktursteifigkeit in Abhängigkeit von der Verbindungsfestigkeit aufgezeigt werden. Abschließend wird ein empirisch-numerisches Prognosemodell zur Vorhersage der Verbindungsfestigkeit von gemeinsam tiefgezogenen Mehrschichtverbunden für rotationssymmetrische Bauteile abgeleitet und validiert. Dieses Modell gilt für die in dieser Arbeit aufgestellten Randbedingungen (z.B. annährend senkrechte Zarge des Bauteils). Im zweiten Teil der Arbeit wird das Gemeinsamtiefziehen auf mögliche industrielle Anwendungen übertragen. Neben dem Fügeprozess des Gemeinsamtiefziehens werden Versteifungs- bzw. Befestigungselemente einstufig in den Mehrschichtverbund integriert, sodass Montagezeiten verkürzt, Hilfsfügeelemente (z.B. Nieten) subsituiert und Zusatzfunktionen (z.B. Drehmomentübertragung) geschaffen werden. Die im Rahmen dieser Arbeit hergestellten kraftschlüssigen Mehrschichtverbunde können beispielsweise ein Drehmoment in Fail-Safe-Anwendungen bis zu 80 Nm übertragen (vgl. Kap.5). Im dritten Teil dieser Arbeit wird die Ermittlung der Verbindungsfestigkeit von stoffschlüssig gefügten Mehrschichtverbunden (Sandwichbleche) betrachtet, da die zuvor betrachteten kraftschlüssig gefügten Mehrschichtverbunde aufgrund der Reibungskräfte nur begrenzte Verbindungsfestigkeiten erreichen. Nachteile dieser Verbunde bestehen in der ungenauen numerischen Vorhersagbarkeit des Versagens der Klebstoffzwischenschicht, sowie in der aufwendigen Kennwertermittlung und der Charakterisierung des Delaminationsverhaltens. Aus diesem Grund wird eine neue inverse Methodik zur Kennwertermittlung von Sandwichblechen auf Basis eines mehrachsigen Laborversuchs vorgestellt. Diese Vorgehensweise ermöglicht eine präzise Vorhersage des Zwischenschichtversagens von dünnen Klebschichten in Sandwichblechen in der Blechumformung. Der wesentliche Erkenntnisgewinn dieser Arbeit besteht daher einerseits in der Vorhersage der Verbindungsfestigkeit zweier gemeinsam umgeformter Platinen nach der Umformung und anderseits in der verbesserten Vorhersage des Zwischenschichtversagens von dünnen Klebeschichten. Die mit dieser Arbeit vorliegenden neuen Vorhersagemöglichkeiten, insbesondere im Bereich der kraftschlüssig gefügten Mehrschichtverbunde, bieten langfristig neue Konstruktions- und Auslegungsmöglichkeiten für flächig zu fügende Blechbauteile. Die in dieser Arbeit durchgeführten Grundlagenuntersuchungen sollten zukünftig dazu verwendet werden, um die Verbindungsfestigkeit von komplexeren Bauteilen vorherzusagen. Eine Kombination aus Form- und Kraftschluss kann dabei die übertragbare Verbindungskraft erhöhen. Denkbar sind beispielweise Anwendungen aus dem Design-, Verpackungs- oder Korrosionsschutzbereich, welche keine großen mechanischen Beanspruchungen der Bauteile in der Betriebs- und Nutzungsphase erfahren und unterschiedliche Ansprüche an die Funktion von innerem und äußerem Bauteil fordern.Item Open Access Beitrag zur Erhöhung der Schnittflächenqualität und des Formänderungsvermögens schergeschnittener Bauteilkanten(Stuttgart : Institut für Umformtechnik, 2023) Senn, Sergei; Liewald, Mathias (Univ.-Prof. Dr.-Ing. Dr. h.c., MBA)Die Anforderungen an die Qualität von schergeschnittenen Bauteilkanten haben in den letzten Jahren erheblich zugenommen. Insbesondere in der Elektronikindustrie werden Schnittkanten mit einem möglichst großen Glattschnittanteil gefordert, wobei sie zugleich gratfrei sein und ein hohes verbleibendes Formänderungsvermögen aufweisen sollen. Dieser Trend resultiert aus dem verstärkten Einsatz gestanzter metallischer Produkte in elektronischen Komponenten, wie beispielsweise Kantsteckern oder Leiterplattenhalteklipps, die zur Befestigung von Platinen in Steuergeräten dienen. In diesen Anwendungen sind Bauteilkanten mit Schnittgraten inakzeptabel, da sie während des Produktlebenszyklus, zum Beispiel aufgrund von Vibrationen im Betrieb eines Kraftfahrzeugs, zu Einrissen und Brüchen des Bauteils oder aber auch zu Ablösungen führen können. Dies könnte zu einem Kurzschluss und somit zu einem Ausfall des Produkts führen. Daher ist es insbesondere im Bereich des Stanzens von Elektronikprodukten von entscheidender Bedeutung, dass die Schnittkanten gratfrei sind und hohe Anforderungen an die Schnittflächenqualität erfüllen. Die steigenden Qualitätsanforderungen an schergeschnittene Bauteilkanten in der Elektronikindustrie stehen im Einklang mit dem Bestreben nach immer präziseren und zuverlässigeren Komponenten. Durch die Realisierung von gratfreien Schnittkanten und einer hohen Schnittflächenqualität wird die Funktionalität und Langlebigkeit elektronischer Produkte verbessert. Dies ist von großer Bedeutung, insbesondere in sicherheitskritischen Anwendungen wie der Automobilindustrie, in der Ausfälle aufgrund von fehlerhaften Bauteilen große Rückrufaktionen zu Folge haben können. Um den gestiegenen Qualitätsanforderungen gerecht zu werden, sind Forschungs- und Entwicklungsanstrengungen erforderlich, um neue Schneidverfahren und Werkzeugkonzepte zu entwickeln. Die Vergrößerung des Glattschnittanteils, die Realisierung von gratfreien Schnittkanten und das Beibehalten eines möglichst hohen Formänderungsvermögens bilden dabei entscheidende technologische Aspekte. Durch innovative Technologien und Prozesse können schergeschnittene Bauteilkanten hergestellt werden, die den hohen Qualitätsstandards der Elektronikindustrie gerecht werden und gleichzeitig eine effiziente und zuverlässige Produktion ermöglichen. Diese Arbeit greift das Problem auf und zielt darauf ab, die Schnittflächenqualität von schergeschnittenen Bauteilkanten durch die Induzierung lokaler Druckspannungen zu verbessern. Dies wird durch eine geometrische Modifikation bzw. Neugestaltung der Stempelschneidkanten erreicht. Im ersten Teil der Arbeit wird eine solche Modifikation an einem klassischen Schneidstempel durchgeführt. Dabei wird die Stirnfläche des Stempels stark konkav ausgeformt und nur mit einer relativ kleinen ringförmigen Auflagefläche auf den auszutrennenden Butzen versehen. Durch die Reduzierung der Kontaktfläche werden lokale Druckspannungen in der Scherzone erzeugt, so dass sich während des Schervorgangs ein hinreichend großer Gradient dieser Schubspannungen mit der Bewegungsrichtung des Stempels mitbewegen. Dadurch erfolgt die Rissinitiierung deutlich verzögert, was zu einem höheren Glattschnittanteil und geringerem Kanteneinzug führt. Allerdings ist mit diesem Verfahren keine Gratfreiheit und kein ausreichendes Formänderungsvermögen der Schnittkante erreichbar. Aus diesem Grund wird im zweiten Teil der Arbeit ein zweistufiges Schneidverfahren weiterentwickelt. Dabei erfolgt eine Modifikation der Stempelschneidkante in der Anschneidestufe beim Konterschneiden. Dies ermöglicht die Kombination der Vorteile zweier Verfahren: des Konterschneidens und des Nachschneidens. Beide Verfahren werden in zwei Stufen durchgeführt. Das Konterschneiden ermöglicht gratfreie Bauteile, während das Nachschneiden hohe Glattschnitte mit einem hohen verbleibenden Formänderungsvermögen der Schnittkante ermöglicht. Durch die geometrische Modifikation der Anschneidestufe, beispielsweise durch das Einbringen einer abgesetzten Schneidkante in Kombination mit negativen Schneidspalten beim Anschneiden wird es möglich, beide Verfahren zu kombinieren und ebenfalls senkrechte Druckspannungen in Blechdickenrichtung beim Anschneiden zu erzeugen. Dadurch wird eine Schnittkante erreicht, die gratfrei ist, eine sehr hohe Schnittflächenqualität aufweist und gleichzeitig ein hohes verbleibendes Formänderungsvermögen für nachfolgende Umformvorgänge ermöglicht. Durch die entwickelten Verfahren und deren kombinierter Einsatz wird angestrebt, die Herausforderungen in Bezug auf die Schnittflächenqualität bei schergeschnittenen Bauteilkanten in der Elektronikindustrie zu bewältigen. Durch die Optimierung der Schneidverfahren wird eine präzise Herstellung von Bauteilkanten mit hohen Qualitätsanforderungen ermöglicht, was insbesondere in sicherheitskritischen Anwendungen von großer Bedeutung ist.Item Open Access Verbesserte Prognose lokaler Einschnürungen in mehrstufigen Blechumformprozessen(Stuttgart : Institut für Umformtechnik, 2021) Drotleff, Klaus; Liewald, Mathias (Univ.-Prof. Dr.-Ing. Dr. h.c. MBA)Die korrekte Prognose lokaler Einschnürungen während der Umformung komplex geformter Blechbauteile stellt heute einen entscheidenden Erfolgsfaktor für die Erreichung von Zeit-, Kosten- und Qualitätszielen in der Methodenplanung und im Werkzeugbau dar. Seit den 1970er Jahren ist bekannt, dass die Grenzformänderungskurve nach DIN EN ISO 12004-2 keine korrekte Prognose des Beginns von lokalen Einschnürungen im Fall von nicht-linearen Dehnpfaden ermöglicht. Bisher wird dieser Tatsache in der industriellen Praxis häufig durch die Berücksichtigung großer Sicherheitsfaktoren in der Methodenplanung und der Werkzeugkonstruktion Rechnung getragen. Dies ist sowohl aus wissenschaftlicher als auch aus wirtschaftlicher Sicht ein unbefriedigender Zustand. In Zeiten, in denen der bewusste Umgang mit Ressourcen und die Verkürzung von Entwicklungs- und Fertigungszyklen deutlich ins Bewusstsein gerückt sind, ist es unumgänglich, die Herstellbarkeit moderner Blechbauteile in einem möglichst frühen Projektstadium genau zu prognostizieren. Wie im Stand der Technik dieser Arbeit beschrieben, existieren eine Vielzahl an Ansätzen und Modellen zur Prognose lokaler Einschnürungen zur Charakterisierung des Umformverhaltens moderner Blechwerkstoffe für lineare und nicht-lineare Dehnpfade. Diese Modelle sollen die Vorausberechnung des Einschnürbeginns eines Blechwerkstoffs in einem bestimmten Umformprozess ermöglichen. Je nach Modell, werden dafür theoretische Annahmen oder empirische Messungen für die Bedatung des Modells verwendet. Eine praxisnahe Evaluierung der Berechnungsergebnisse anhand konkreter Versuchsbauteile ist allerdings kaum veröffentlicht. Im Rahmen dieser Arbeit wurde ein Kriterium entwickelt, welches es ermöglicht, den Beginn der lokalen Einschnürung der Platine unter linearer und nicht-linearer Dehnung zu prognostizieren. Ausgangspunkt für die Entwicklung des Kriteriums bildeten umfangreiche Versuche zur Charakterisierung des Umformverhaltens der Blechwerkstoffe AA6014, DP600 und DX54D. Neben klassischen Werkstoffkennwerten aus dem einachsigen Zugversuch wurden insbesondere Grenzformänderungskurven der Blechwerkstoffe nach unterschiedlichen Vorbeanspruchungen aufgenommen. Diese Ergebnisse zeigen deutlich, wie stark sich das Umformvermögen der Blechwerkstoffe in Abhängigkeit der während der Umformung in die Platine eingebrachten nicht-linearen Dehnpfade verändert. Auf Basis dieser Daten wurde ein Kriterium entwickelt, das den Beginn der lokalen Einschnürung für lineare und nicht-lineare Dehnpfade prognostiziert. Entwicklungsziel bildete ein Kriterium mit geringem Bedatungsaufwand, welches möglichst genaue Aussagen über den Beginn der lokalen Einschnürung der Blechwerkstoffe AA6014, DP600 und DX54D unter nicht-linearen Dehnpfaden ermöglicht. Die praktische Anwendbarkeit dieses Kriteriums wurde zuerst an Grenzformänderungskurven mit nicht-linearen Dehnpfaden nachgewiesen. Anschließend wurde die Prognosefähigkeit des sogenannten IFU FLC-Kriteriums an vier unterschiedlichen Versuchsbauteilen überprüft und evaluiert. Die Versuchsbauteile mit der Bezeichnung „Tunnelverstärkung“ (Versuchsbauteil der Daimler AG) und „Innentüre“ werden in einem Pressenhub gefertigt. Beide Bauteile zeichnen sich durch lokale Einschnürungen in bestimmten Bauteilzonen aufgrund nicht-linearer Dehnpfade aus. Der Beginn der lokalen Einschnürung, der für diese Bauteile anhand der klassischen Grenzformänderungskurve nicht korrekt prognostiziert wird, kann mittels des im Rahmen dieser Arbeit entwickelten Kriteriums deutlich genauer vorhergesagt werden. Der Fokus dieser Arbeit liegt insbesondere auf der Prognose lokaler Einschnürungen in mehrstufigen Blechumformprozessen. Diese weisen häufig besonders stark ausgeprägte nicht-lineare Dehnpfade auf. Hierzu wurden ein als Doppelnapf bezeichnetes Bauteil und ein in drei Umformstufen tiefgezogener Stumpfnapf hinsichtlich des Einschnürbeginns unter nicht-linearen Dehnpfaden untersucht. Diese Versuche dienen zur Evaluierung des IFU-FLC-Kriteriums für mehrstufige Umformprozesse. Der in drei Umformstufen tiefgezogene Stumpfnapf und die dafür entwickelten Umformwerkzeuge wurden so gestaltet, dass eine in-situ Messung der Dehnpfadverläufe möglich ist. Auch für diese beiden in zwei, beziehungsweise drei Umformstufen angefertigten Bauteile zeigte sich, dass das neu entwickelte IFU-FLC-Kriterium eine deutlich genauere Prognose des Beginns der lokalen Einschnürung ermöglicht als die klassische Grenzformänderungskurve nach DIN EN ISO 12004-2. Durch die genauere Prognose lokaler Einschnürungen in Blechumformprozessen mit nicht-linearen Dehnpfaden können diese besser ausgelegt, die Umformwerkzeuge genauer konstruiert und die gesamte Prozesskette bis zur Serienproduktion des Bauteils kostengünstiger und robuster dargestellt werden. In zukünftigen Prozessketten, auf Basis einer virtuellen Bauteilauslegung, wird die Verknüpfung zwischen den während der Herstellung in den Werkstoff eingebrachten Formänderungen und den im weiteren Betrieb auftretenden Belastungen im Werkstoff eine entscheidende Fragestellung darstellen. Dadurch kann das Betriebsverhalten von Blechbauteilen über ihren gesamten Produktlebenszyklus genauer berechnet werden. Zur Beantwortung dieser Fragestellung kann das im Rahmen dieser Arbeit entwickelte Kriterium einen Beitrag leisten.Item Open Access Biomimetics design of sandwich-structured composites(2023) Kunzmann, Carsten; Aliakbarpour, Hamaseh; Ramezani, MaziarIn the context of energy efficiency and resource scarcity, lightweight construction has gained significant importance. Composite materials, particularly sandwich structures, have emerged as a key area within this field, finding numerous applications in various industries. The exceptional strength-to-weight ratio and the stiffness-to-weight ratio of sandwich structures allow the reduction in mass in components and structures without compromising strength. Among the widely used core designs, the honeycomb pattern, inspired by bee nests, has been extensively employed in the aviation and aerospace industry due to its lightweight and high resistance. The hexagonal cells of the honeycomb structure provide a dense arrangement, enhancing stiffness while reducing weight. However, nature offers a multitude of other structures that have evolved over time and hold great potential for lightweight construction. This paper focuses on the development, modeling, simulation, and testing of lightweight sandwich composites inspired by biological models, following the principles of biomimetics. Initially, natural and resilient design templates are researched and abstracted to create finished core structures. Numerical analysis is then employed to evaluate the structural and mechanical performance of these structures. The most promising designs are subsequently fabricated using 3D printing technology and subjected to three-point bending tests. Carbon-fiber-reinforced nylon filament was used for printing the face sheets, while polylactic acid (PLA+) was used as the core material. A honeycomb-core composite is also simulated and tested for comparative purposes, as it represents an established design in the market. Key properties such as stiffness, load-bearing capacity, and flexibility are assessed to determine the potential of the new core geometries. Several designs demonstrated improved characteristics compared to the honeycomb design, with the developed structures exhibiting a 38% increase in stiffness and an 18% enhancement in maximum load-bearing capacity.Item Open Access Cold forging of gear components by a modified Samanta process : conference proceedings(2020) Weiß, A.; Deliktas, T.; Liewald, M.; Missal, N.Cold forging of toothed components by extrusion is associated with high punching forces and tool loads, which requires the use of expensive and high-strength tool steels. High process forces result into a substantial tool deflection, which significantly reduces the precision of the toothed components. Thus, the development of alternative processes in order to reduce acting process forces in cold forging is of high interest. A potential process enhancement approach is to use a preform operation where the resulting preform can be formed partwise either in the same or in a subsequent die. Preforms allow to systematically control the material flow in subsequent forming operations. For this reason, the Institute for Metal Forming Technology in Stuttgart has developed a new cold extrusion process for manufacturing toothed components based on the conventional Samanta process. The newly developed die design of the Guided Material Flow-Samanta (GMF-Samanta) process enables efficient cold forging of gears. By means of numerical simulations and forging experiments it was successfully demonstrated that the new Guided Material Flow-Samanta process results into a significant reduction of punch force and normal pressure while simultaneously improving the die filling.Item Open Access Dry metal forming using volatile lubricants injected into the forming tool through flow-optimized, laser-drilled microholes(2020) Henn, Manuel; Reichardt, Gerd; Weber, Rudolf; Graf, Thomas; Liewald, MathiasA novel tribologic system was developed in which volatile lubricants (carbon dioxide-CO2 or nitrogen-N2) were used as a substitute for mineral oil-based lubricants in deep drawing processes. This process allows an intermediate medium to be introduced into the tool contact surfaces under high pressure by flow-optimized, laser-drilled microholes. This eliminates the need for subsequent cost-intensive cleaning processes as volatile lubricants evaporate while expanding to ambient pressure without leaving any residue. This article gives an overview of the current findings to enable and characterize the novel tribologic system. The areas of microhole laser drilling by ultrashort pulsed laser radiation, characterization of the novel tribologic system and realization of the system using a prototype tool will be described.Item Open Access Surrogat-Modelle zur Auslegung und Optimierung einhubiger Scherschneidprozesse(Stuttgart : Institut für Umformtechnik, 2024) Schenek, Adrian; Liewald, Mathias (Prof. Dr.-Ing. Dr. h.c., MBA)Das Scherschneiden zählt zu den wirtschaftlich bedeutenden Fertigungsverfahren in der blechbearbeitenden Industrie. Grund dafür ist, dass nahezu jedes Blechbauteil im Laufe seiner Fertigungskette beschnitten und/oder gelocht wird. Im Zuge der stetig ansteigenden Anforderungen an die Qualität von Blechbauteilen müssen die beim Scherschneiden entstehenden Bauteilkanten heute vermehrt Qualitätsanforderungen wie denjenigen von Bauteilfunktionsflächen entsprechen. In der industriellen Praxis sind derartig hohe Qualitäten von Schnittkanten bzw. -flächen durch einen geringen Kanteneinzug, einen hohen Glattschnittanteil sowie geringe Bruchflächen- und Grathöhen gekennzeichnet. Darüber hinaus ist neben der möglichst hohen Schnittflächenqualität bei der Herstellung von schergeschnittenen Bauteilen auch die Produktivität des verwendeten Verfahrens von entscheidender Bedeutung. Diese Produktivität ist insbesondere durch hohe Ausbringungsmengen, geringe Werkzeugkosten und niedrige Werkzeuginstandhaltungskosten gekennzeichnet. In diesem Zusammenhang zählt das konventionelle Scherschneiden bzw. das Lochen mit einfachwirkenden Pressen zu den produktivsten Schneidverfahren. Nachteilig ist dabei jedoch, dass mit dem konventionellen Scherschneiden nur Schnittkanten mit vergleichsweise groben Toleranzen und maximalen Glattschnittanteilen von bis zu 50 % der Blechdicke erzielt werden können. Sind höhere Bauteilkantenqualitäten erforderlich, so werden bislang Präzisionsschneidverfahren wie Feinschneiden, Genauschneiden oder Nachschneiden eingesetzt. Verglichen mit dem Normalschneiden führt die höhere Werkzeug- und Prozesskomplexität der genannten Präzisionsschneidverfahren jedoch zu deutlich geringeren Ausbringungsmengen und damit zu höheren Bauteilkosten. Vor dem Hintergrund dieser Problemstellungen wurde das Verfahrensprinzip des Hohlschneidens in den vergangenen Jahren am Institut für Umformtechnik (IFU) entwickelt. Das Hohlschneiden stellt ein Sonderschneidverfahren dar, welches sich infolge geometrisch angepasster Lochstempelgeometrien signifikant von Normalschneidprozessen unterscheidet. In Abgrenzung zu konventionell plan geschliffenen Lochstempeln wird die Stempelgeometrie beim Hohlschneiden durch eine stirnseitig angebrachte „Stegbreite“ entlang der Schneidkante des Stempels sowie durch einen sogenannten „Stegwinkel“ definiert. Diese geometrische Anpassung von Lochstempeln bewirkt eine Druckspannungsinduktion in der Scherzone, wodurch die Rissentstehung innerhalb der Scherzone unterdrückt und schließlich eine Glattschnittsteigerung gegenüber dem Normalschneiden erzielt werden kann. Die Motivation des Hohlschneidens besteht demnach darin, Schnittflächen von hoher Qualität zu erzeugen, ohne dass hierfür technologisch aufwendige Werkzeugkonstruktionen wie bei den Sonderschneidverfahren des Fein-, oder Nachschneidens benötigt werden. Das theoretisch hohe wirtschaftliche Anwendungspotential dieses Verfahrens lässt sich dadurch begründen, dass die Steigerung von Schnittflächenqualitäten in bereits bestehenden konventionellen Scherschneidwerkzeugen allein durch den Austausch von Normalschneidstempeln durch Hohlschneidstempel erreicht werden kann. Die der Arbeit zugrundeliegende wissenschaftliche Problemstellung hinsichtlich des Verfahrensprinzips des Hohlschneidens besteht darin, dass Wissensdefizite bezüglich des Zusammenhangs zwischen einzelnen Werkzeugparametern (Stegbreite, Stegwinkel, Schnittlinienführung, Schneidspalt, etc.) sowie Qualitätskenngrößen an den gescherten Blechbauteilrändern vorlagen. Aufgrund mangelnder veröffentlichter Untersuchungsergebnisse existierten bis heute keine mit dem Normalschneiden vergleichbaren Normen, Richtlinien oder Datensätze, die eine entsprechende Werkzeug- bzw. Verfahrensauslegung unterstützen. Als problematisch erwies sich hierbei, dass neben den Parametern des Normalschneidens weitere werkzeugseitige Einflussfaktoren hinsichtlich des Schnittergebnisses zu berücksichtigen sind. Für den Fall solch multidimensionaler Problemstellungen haben sich in den vergangenen Jahren vermehrt datengetriebene Modellierungsansätze des maschinellen Lernens (ML) durchgesetzt. Die Eignung maschineller Lernverfahren für den technologischen Anwendungsbereich des Scherschneidens wurde bislang allerdings nur für spezifische Teilproblemstellungen des Normal- und Feinschneidens nachgewiesen. Diesbezüglich wurden in der Vergangenheit insbesondere Verschleißproblematiken, seltener jedoch qualitätsbezogene Auslegungskriterien für Scherschneidwerkzeuge betrachtet. Die Zielsetzung der vorliegenden Arbeit adressiert die Entwicklung solch datenbasierter Auslegungsmodelle für das Verfahrensprinzip des Hohlschneidens. Eine ausschließlich experimentelle Erprobung unter Praxisbedingungen erschien aufgrund des dafür benötigten Versuchsumfangs als unrealistisch. Die Methode der Surrogat-Modellierung konnte vor diesem Hintergrund als geeigneter Lösungsansatz identifiziert werden. Der grundsätzliche Gedanke hinter der Entwicklung von Surrogat-Modellen besteht darin, auf Basis von Simulationsergebnissen interpolierende bzw. approximierende Ausgleichsfunktionen zur Vorhersage von Zielkenngrößen für einen vorabdefinierten Bereich statistisch verteilter Eingabemerkmale zu ermitteln. Die Ausführungen der vorliegenden Arbeit zeigen, dass höherdimensionale Wirkzusammenhänge zwischen Halbzeug-, Werkzeug- und Schnittflächenparametern des Hohlschneidens von maschinellen Lernalgorithmen auf Grundlage numerischer Daten erlernt und quantifiziert werden können. Unter Verwendung so angelernter ML-Modelle, Methoden der erklärbaren Künstlichen Intelligenz sowie einer differenzierten Betrachtung des in der Scherzone vorherrschenden Spannungszustandes konnte neues explizites und experimentell validierbares Prozesswissen für das Verfahrensprinzip des Hohlschneidens generiert werden. Unter Berücksichtigung dieses so hergeleiteten Prozesswissens ist eine signifikante Verbesserung von Schnittflächenqualitätskenngrößen gegenüber dem Referenzzustand des Normalschneidens gelungen. Die vorliegende Arbeit präsentiert somit eine neuartige systematische Vorgehensweise für die Auslegung und Optimierung einhubiger Scherschneidprozesse.Item Open Access Neuartige Auslegungsverfahren zur Reduzierung der Werkzeugbelastung beim zweistufigen Prägen(Stuttgart : Institut für Umformtechnik, 2024) Weiß, André; Liewald, Mathias (Prof. Dr.-Ing. Dr. h.c., MBA)Der stetige technologische Fortschritt und die fertigungstechnologischen Innovationen in der Produktion spielen eine Schlüsselrolle, die Effizienz etablierter Technologien in Hochlohnländern radikal zu steigern, um mit Unternehmungen einen Vorteil im agilen globalen Wettbewerb zu erlangen [1]. Umformtechnische Fabrikationsmethoden bieten hierzu eine etablierte, kosteneffiziente und ressourcenschonende Produktionstechnologie, um performante Komponenten in hoher Stückzahl herzustellen [2,3]. Gegenwärtig stellt die begrenzte Gestaltungsmöglichkeit der herzustellenden Geometrie einen bedeutenden und stark limitierenden Faktor für den Einsatz umformtechnischer Produktionsmethoden dar. Exemplarisch können Stirnpassverzahnungen nach aktuellem Stand der Technik umformtechnisch nicht vollständig ausgeformt werden, wodurch eine zerspanende Bearbeitung für eine Vielzahl von Komponenten bislang unumgänglich ist. Das Ziel der vorliegenden wissenschaftlichen Arbeit besteht darin, die bekannten Verfahrensgrenzen der umformtechnischen Herstellung von schwierig auszuformenden Formelementen bedeutend zu erweitern, um die technologischen, wirtschaftlichen und verfahrensspezifischen Vorteile für ein breites Bauteilspektrum zu erschließen. Stirnpassverzahnungen werden zumeist als Kupplungselemente zur Kraft- und Drehmomentübertragung verwendet, wobei die Leistungsfähigkeit dieser Maschinenelemente direkt von der Bauart des Kupplungssystems und der Fertigungsqualität der ineinandergreifenden Kupplungskomponenten abhängt. Aufgrund stetig steigender Anforderungen an die Leistungsfähigkeit von Kupplungselementen wird es in Zukunft nur mit erheblichem Fertigungsaufwand möglich sein, die geforderten Verzahnungsgeometrien mit den bekannten Methoden herzustellen. Damit die wirtschaftliche umformtechnische Herstellung auch zukünftig für Hochleistungskupplungselemente verwendet werden kann, müssen neue Methoden und Verfahren erforscht werden, um die Formfüllung von Verzahnungsgeometrien maßgeblich zu verbessern. Nach aktuellem Stand der Technik werden Stirnpassverzahnungen überwiegend mit einem Prägeverfahren umformtechnisch hergestellt. Charakteristisches Merkmal von Prägeprozessen ist die große Kontaktzone zwischen Werkstück und Werkzeug am Ende des Umformprozesses. Der Werkstoff wird im Prägeprozess von solchen Pressteilen ausschließlich im Bereich der Formelemente plastisch umgeformt. Dabei entstehen große Kontaktzonen ohne Werkstoffrelativbewegung, welche hohe Prozesskräfte und Werkzeugbelastungen am Ende des Prägeprozesses verursachen. Aufgrund der hohen Werkzeugbelastungen am Ende des Prägeprozesses werden die Verzahnungsspitzen in der Praxis nicht vollständig ausgeformt. Um die Formgebung in Prägeprozessen zu verbessern, wurden jedoch bereits diverse Untersuchungen zur Erweiterung der Verfahrensgrenzen von Prägeprozessen durchgeführt. Zumeist wird hierzu eine Vorform zur gezielten Materialvorverteilung vor der Prägestufe in das Werkstück eingeformt. Die aus dem Stand der Technik bekannten Vorformen für Prägeprozesse werden ohne Berücksichtigung der herzustellenden Verzahnung oder Prägegeometrie gestaltet, wobei eine umlaufende Fase am Rohteil die meist genutzte Vorform darstellt. Eine Vorform dieser Bauart bewirkt eine Reduktion des überproportionalen Kraftanstieg am Prozessende, wodurch der Füllgrad der Verzahnungen nur geringfügig gesteigert werden kann. Für die Entwicklungen einer kraftreduzierenden Werkstoffvorverteilung für Prägeprozesse wird aktuell die herzustellende Geometrie für die Konstruktion der Vorform nicht berücksichtigt. Somit kann der Werkstofffluss nicht gezielt in die herzustellende Geometrie geleitet werden, wodurch das volle Potenzial der Werkstück-Werkzeugkontaktreduktion derzeit nicht ausgeschöpft wird. Eine an die Formelemente angepasste Materialvorverteilung bietet das Potenzial, die WerkstückWerkzeugkontaktreduktion bedeutend zu verbessern und damit die Prozesskräfte signifikant zu reduzieren. Diese allgemeine Forschungshypothese wird in der vorliegenden Arbeit dazu verwendet, eine Stirnverzahnungsgeometrie herzustellen, wobei untersucht wird, wie die Materialvorverteilung an die zu fertigende Verzahnung angepasst werden kann, um den Werkstofffluss in der nachfolgenden Prägestufe zu begünstigen. Hierzu wird eine konkretisierte Forschungshypothese aufgestellt: Wird der Werkstück-Stempelkontakt in schwierig auszuformenden Zonen (Zahnspitze) vor dem Kontakt in einfach auszuformenden Zonen (Zahnfuß) erzeugt, kann eine hohe Formfüllung mit geringen Prozesskräften erreicht werden. Basierend auf dieser konkretisierten Forschungshypothese werden in dieser Arbeit zwei Verfahren zur Materialvorverteilung entwickelt: das Free-Divided-Flow- (FDF) und das Pin-to-Gear- (PtG) Verfahren. Im FDF-Verfahren wird das Material einseitig neben der Verzahnung vorverteilt. Hierdurch wird zunächst der Bereich, in welchem das Material vorverteilt wurde, nachfolgend die Verzahnung und abschließend der zweite Bereich neben der Verzahnung ausgeformt. Im PtG-Verfahren wird das Material im Bereich der Verzahnung in einer simplifizierten Geometrie vorverteilt, wodurch zunächst die Verzahnung ausgeformt wird und erst darauffolgend alle angrenzenden Bereiche. Mit beiden Verfahren können die auftretenden Prozesskräfte, im Verhältnis zur konventionellen Formgebung, signifikant reduziert werden. Unter Berücksichtigung einer umformtechnischen Vorformherstellung können die Einsatzgebiete beider vorgestellten Verfahren dargestellt werden: Das FDF-Verfahren eignet sich für die Herstellung von Werkstücken mit großen Abständen zwischen den Einzelzähnen während sich das PtG-Verfahren zur Formgebung von Verzahnungsgeometrien mit hohem Aspektverhältnis eignet. Zur Validierung der Forschungshypothese und zur Analyse der entworfenen Verfahren wird zunächst ein Materialmodell erstellt, um darauf basierend die mehrstufigen FEM-Simulationen der numerischen Verfahrensuntersuchung aufzubauen. Ziel der numerischen Untersuchung ist die Entwicklung einer parametrisierten Vorformgeometrie für beide Verfahren, welche in Abhängigkeit der herzustellenden Verzahnung und ohne weiterführende numerische Simulationen definiert werden kann. Hierzu werden statistische Versuchspläne, Sensitivitätsanalysen, Optimierungsfunktionen und Methoden der Data Analytics angewendet. Zur experimentellen Validierung wird ein Versuchswerkzeug für fünf unterschiedliche Verzahnungen konstruiert und gefertigt (vier Sperrverzahnungen und eine Hirth-Verzahnung). Schwerpunkte der experimentellen Untersuchung stellen die Formfüllungsanalyse, die Maßabweichungsanalyse, die Presskraftanalyse, die Oberflächenrauheitsanalyse, die metallurgische Gefügeanalyse sowie die Analyse der Härteverteilung der Verzahnungsgeometrien dar. In der experimentellen Untersuchung wird im hinteren Teil der Arbeit gezeigt, dass alle Verzahnungsgeometrien beider Verfahren vollständig und ohne Umformfehler ausgeformt werden können. Dabei werden die Verzahnungen sowohl aus dem Einsatzstahl 16MnCrS5 als auch aus dem unlegierten Baustahl C4C mit unterschiedlichen Schmierstoffsystemen im identischen Umformwerkzeug umgeformt. Zur zukünftigen und vereinfachten Verfahrensanwendung werden Konstruktionsrichtlinien verfasst sowie die ermittelten Verfahrensgrenzen des FDF- und des PtG-Verfahrens erläutert. Im Rahmen dieser wissenschaftlichen Arbeit wird mittels unterschiedlicher Verzahnungsgeometrien dargestellt, dass die Prozesskräfte deutlich reduziert und der Formfüllungsgrad bedeutend gesteigert werden können, wenn der Werkstück-Stempelkontakt in der Zahnspitze vor dem Kontakt mit dem Zahnfuß erfolgt. Somit kann die aufgestellte Forschungshypothese am Ende dieser Arbeit mittels numerischer und experimenteller Verfahrensuntersuchungen vollumfänglich validiert werden. Die entwickelten Verfahren erweitern die Verfahrensgrenzen von konventionellen Prägeprozessen signifikant, wodurch zukünftig eine Vielfalt bislang zerspanend hergestellter Verzahnungsgeometrien umformtechnisch und in hoher Qualität gefertigt werden können. Die daraus resultierenden Steigerungen der Produktgestaltungsmöglichkeiten haben überdies eine direkte Auswirkung auf unterschiedliche Fertigungsbereiche entlang der gesamten Prozesskette. Hierdurch werden sowohl die lokal umformenden Fertigungsbetriebe im internationalen Wettbewerb gestärkt als auch ein gesamtwirtschaftlicher Nutzen zur Standortsicherung erwirtschaftet.
- «
- 1 (current)
- 2
- 3
- »