Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 261
  • Thumbnail Image
    ItemOpen Access
    Heat transport from atmosphere through the subsurface to drinking‐water supply pipes
    (2023) Nissler, Elisabeth; Scherrer, Samuel; Class, Holger; Müller, Tanja; Hermannspan, Mark; Osmancevic, Esad; Haslauer, Claus
    Drinking‐water quality in supply pipe networks can be negatively affected by high temperatures during hot summer months due to detrimental bacteria encountering ideal conditions for growth. Thus, water suppliers are interested in estimating the temperature in their distribution networks. We investigate both experimentally and by numerical simulation the heat and water transport from ground surface into the subsurface, (i.e., above drinking‐water pipes). We consider the meteorological forcing functions by a sophisticated approach to model the boundary conditions for the heat balance at the soil-atmosphere interface. From August to December 2020, soil temperatures and soil moisture were measured dependent on soil type, land‐use cover, and weather data at a pilot site, constructed specifically for this purpose at the University of Stuttgart with polyethylene and cast‐iron pipes installed under typical in situ conditions. We included this interface condition at the atmosphere-subsurface boundary into an integrated non‐isothermal, variably saturated (Richards') the numerical simulator DuMux 3. This allowed, after calibration, to match measured soil temperatures with ±2°C accuracy. The land‐use cover influenced the soil temperature in 1.5 m more than the soil material used for back‐filling the trench above the pipe.
  • Thumbnail Image
    ItemOpen Access
    High-resolution spatio-temporal measurements of the colmation phenomenon under laboratory conditions
    (Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2022) Mayar, Mohammad Assem; Wieprecht, Silke (Prof. Dr.-Ing.)
    The fine sediment infiltration and accumulation into the gravel bed of rivers, the so-called colmation phenomenon, is a pernicious process exacerbated by anthropogenic activities. Owing to the importance and complexity of this phenomenon, it has been widely studied over the last decades. Various devices and methods have been developed to assess this phenomenon, where most of them are destructive and sample-based, resulting in an alteration of the natural conditions. Therefore, non-intrusive techniques, which provide spatial and temporal details with a high-resolution, are required to discretize the mechanisms involved in the colmation process. To address these issues, investigations under laboratory conditions may simplify the complexity of nature and enable individual and exactly defined boundary conditions to be investigated. Therefore, this thesis aims at (i) developing a non-intrusive and undisturbed measurement method for the high-resolution spatio-temporal measurements of the sediment infiltration processes and the development of sediment accumulation in an artificial river bed under laboratory conditions, (ii) applying this method to certain experiments for the assessment of the effects of different boundary conditions on sediment infiltration, and (iii) investigating the colmation phenomenon (also known as clogging) of gravel beds. For this purpose, the gamma-ray attenuation method is used together with an artificial gravel bed arranged from the spheres with various diameters and placed in a laboratory flume. This new method works based on the gamma radiation that passes through the infiltrated sediments, water, and bed spheres, in which the gamma-ray attenuation is linked to the variations of the infiltrated sediments’ quantity. The main simplification of this approach is that gravel beds are represented by the combinations of different-sized spheres. This gives the opportunity to fully distinguish infiltrating sediments from the bed material, reduce the complexity of the natural environment, and allows for repetitive measurements of the same position with different boundary conditions. From the results of this study, first, the gamma-ray attenuation measurement method was optimized to resolve the inconsistencies in the measurements. Subsequently, the concept of the non-intrusive and undisturbed measurement is proved through box experiments. Additional reproducibility experiments in the laboratory flume, for a similar bed structure, showed only small deviations between two experiments with the same setup. Consequently, the established technique was used in a series of experiments to evaluate the effects of different supply rates, total supply masses, and sediment particle size boundary conditions on the sediment infiltration and colmation processes. Vertical profiles of the infiltrated sediment were quantified through high spatial resolution measurements. Furthermore, to evaluate the infiltrating sediment accumulation development, and the temporal variations of the infiltrated sediments, the vertical profile measurements were first repeated after a specific time-period to track interval-averaged variations in all positions of the vertical axis. Next, a specific position of the vertical axis was measured continuously during the entire experiment in a high temporal resolution. The measured vertical profiles illustrate the vertical distribution, colmation, and unimpeded percolation of the infiltrated sediments. The dynamic one-point measurement precisely identifies the three phases (the start of the pore-filling, the required time to fill the pore, and the final amount of infiltrated sediments including natural fluctuation during the ongoing experiments) of the sediment infiltration or the possible clogging. As a limitation, the gamma-ray attenuation system’s current configuration only works in artificial gravel beds because of the given density difference between infiltrated sediments and the artificial bed structure. Intense radiations that pass through the natural bed's thickness are capable of detecting a significant amount of infiltrated sediments. However, small amounts of infiltrated sediments will create only a minimal shift in attenuation, which might be confused with the statistical error. In addition, the legal restriction against using radioactive material in the natural environment is another reason for not applying it in the field. Furthermore, the gamma-ray attenuation method cannot resolve the sediment distribution in the measurement horizon and provides an integrative result for each measurement position. In addition, if a mixture of silt, clay, and sand is supplied to the experiment, the gamma-ray attenuation system will produce a bulk result of all the infiltrated materials. To conclude, despite the limitations mentioned above, the gamma-ray attenuation method offers a unique opportunity for the non-intrusive and undisturbed measurements of the sediment infiltration or the special case of colmation, with a high spatio-temporal resolution. This method has the potential to quantify the investigated processes on a millimetric spatial scale, if the measurement time is not a constraint, or vice versa, in a high temporal resolution (seconds) for a specific position, if spatial scale is not important. Moreover, the gamma-ray attenuation approach can simultaneously measure the longitudinal distribution of the sedimentological processes, if multiple instruments or a single device with several radiation-emitting-holes is in operation. Last, but not least, rather than the spheres, artificial gravel beds could be made of any substance with a composition significantly different from the infiltrating sediments, and the boundary conditions of the experiments can be improved in order to attain conditions close to nature. Finally, the gamma-ray attenuation method can be integrated with advanced flow measurement instruments such as Particle Image Velocimetry (PIV) and other high-resolution endoscopic devices to track the behavior of fine sediment infiltration and its clogging process in the porous gravel beds as it occurs in nature.
  • Thumbnail Image
    ItemOpen Access
    Magnetic resonance imaging of water content and flow processes in natural soils by pulse sequences with ultrashort detection
    (2021) Haber-Pohlmeier, Sabina; Caterina, David; Blümich, Bernhard; Pohlmeier, Andreas
    Magnetic resonance imaging is a valuable tool for three-dimensional mapping of soil water processes due to its sensitivity to the substance of interest: water. Since conventional gradient- or spin-echo based pulse sequences do not detect rapidly relaxing fractions of water in natural porous media with transverse relaxation times in the millisecond range, pulse sequences with ultrafast detection open a way out. In this work, we compare a spin-echo multislice pulse sequence with ultrashort (UTE) and zero-TE (ZTE) sequences for their suitability to map water content and its changes in 3D in natural soil materials. Longitudinal and transverse relaxation times were found in the ranges around 80 ms and 1 to 50 ms, respectively, so that the spin echo sequence misses larger fractions of water. In contrast, ZTE and UTE could detect all water, if the excitation and detection bandwidths were set sufficiently broad. More precisely, with ZTE we could map water contents down to 0.1 cm3/cm3. Finally, we employed ZTE to monitor the development of film flow in a natural soil core with high temporal resolution. This opens the route for further quantitative imaging of soil water processes.
  • Thumbnail Image
    ItemOpen Access
    Climate sensitivity of a large lake
    (2013) Eder, Maria Magdalena; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing.)
    Lakes are complex ecosystems that are on the one hand more or less enclosed by defined borders, but are on the other hand connected to their environment, especially to their catchment and the atmosphere. This study is examinig the climate sensitivity of large lakes using Lake Constance as an example. The lake is situated in Central Europe at the northern edge of the Alps, at the boundary of Austria, Germany and Switzerland. The maximum depth is 235 m, the total surface area is 535 km³ and the total volume 48.45 km². The numerical simulations in this study have been performed with the lake model system ELCOM-CAEDYM. The model system was validated using three different data sets: Observations of a turbid underflow after a flood flow in the main tributary, a lake-wide field campaign of temperature and phytoplankton, and long term monitoring data of temperature and oxygen in the hypolimion. The model system proved to be able to reproduce the effects of a flood flow in the largest tributary,. A huge turbid underflow was observed flowing into the main basin after an intense rain event in the Alps in August 2005. A numerical experiment showed the influence of the earth’s rotation on the flow path of the riverine water within the lake. The model also reproduced the temperature evolution and distribution and to some extent the phytoplankton patchiness measured in spring 2007 during an intensive field campaign. The model reproduced the measured time series of temperature and oxygen in the deep hypolimnion measured in the years 1980-2000. This indicates, that the vertical mixing and the lake’s cycle of mixing and stratification was reproduced correctly. Based on the model set-up validated with long term monitoring data, climate scenario simulations were run. The main focus was on temperature and oxygen concentrations in the hypolimnion, the cycle of stratification and mixing, and the heat budget of the lake. The meteorological boundary conditions for the climate scenario simulations were generated using a weather generator instead of downscaling climate projections from Global Climate Models. This approach gives the possibility to change different characteristics of the climate independently. The resulting lake model simulations are ”what-if”-scenarios rather than predictions, helping to obtain a deeper understanding of the processes in the lake. The main results can be summarized as follows: An increase in air temperature leads to an increase in water temperature, especially in the upper layers. The deep water temperature increases as well, but not to the same extent as the temperature of the epilimnion. This results in an increased vertical temperature difference. Due to the non-linear shape of the temperature-density curve, the difference in density grows even stronger than the temperature difference. This results in enhanced stratification stability, and consequently in less mixing. Complete mixing of the lake becomes more seldom in a warmer climate, but even in the scenario simulations with air temperature increased by 5 °C, full circulation took place every 3-4 years. Less complete mixing events lead to less oxygen in the hypolimnion. Additionally, as many biogeochemical processes are temperature dependant, the oxygen consumption rate is larger in warmer water. In the context of this study, climate variability is defined as episodes with daily average air temperatures deviating from the long-term average for this day of year. The episodes can be described by their duration in days and their amplitude in °C. Changes in climate variability can have very different effects, depending on the average air and water temperatures. The effects are stronger in lakes with higher water temperatures: For the hypolimnetic conditions, the seasonality in warming is important: Increasing winter air temperatures have a much stronger effect on the water temperatures in the lake than increasing summer temperatures. The combined effects of a warmer climate and higher nutrient concentrations enhances oxygen depletion in the hypolimnion. Finally, it is discussed, to what extent the results of this study are transferrable to other lakes. The reactions of Lake Constance to climate change are determined by the physical, geographical and ecological characteristics of the lake. Hydrodynamic reactions are defined by the mixing type, water temperatures and the residence time of the water in the lake. Furthermore it is important that the lake is almost never completely ice-covered, and that there are only minor salinity differences. The reactions of the ecosystem are determined also by the oligotrophic state of the lake. Results of this study thus can be transferred to other deep, monomictic, oligotrophic fresh water lakes, as for example the other large perialpine lakes of glacial origin.
  • Thumbnail Image
    ItemOpen Access
    Comparison study of phase-field and level-set method for three-phase systems including two minerals
    (2022) Kelm, Mathis; Gärttner, Stephan; Bringedal, Carina; Flemisch, Bernd; Knabner, Peter; Ray, Nadja
    We investigate reactive flow and transport in evolving porous media. Solute species that are transported within the fluid phase are taking part in mineral precipitation and dissolution reactions for two competing mineral phases. The evolution of the three phases is not known a-priori but depends on the concentration of the dissolved solute species. To model the coupled behavior, phase-field and level-set models are formulated. These formulations are compared in three increasingly challenging setups including significant mineral overgrowth. Simulation outcomes are examined with respect to mineral volumes and surface areas as well as derived effective quantities such as diffusion and permeability tensors. In doing so, we extend the results of current benchmarks for mineral dissolution/precipitation at the pore-scale to the multiphasic solid case. Both approaches are found to be able to simulate the evolution of the three-phase system, but the phase-field model is influenced by curvature-driven motion.
  • Thumbnail Image
    ItemOpen Access
    Optimal design of experiments to improve the characterisation of atrazine degradation pathways in soil
    (2021) Chavez Rodriguez, Luciana; González‐Nicolás, Ana; Ingalls, Brian; Streck, Thilo; Nowak, Wolfgang; Xiao, Sinan; Pagel, Holger
    Contamination of soils with pesticides and their metabolites is a global environmental threat. Deciphering the complex process chains involved in pesticide degradation is a prerequisite for finding effective solution strategies. This study applies prospective optimal design (OD) of experiments to identify laboratory sampling strategies that allow model‐based discrimination of atrazine (AT) degradation pathways. We simulated virtual AT degradation experiments with a first‐order model that reflects a simple reaction chain of complete AT degradation. We added a set of Monod‐based model variants that consider more complex AT degradation pathways. Then, we applied an extended constraint‐based parameter search algorithm that produces Monte‐Carlo ensembles of realistic model outputs, in line with published experimental data. Differences between‐model ensembles were quantified with Bayesian model analysis using an energy distance metric. AT degradation pathways following first‐order reaction chains could be clearly distinguished from those predicted with Monod‐based models. As expected, including measurements of specific bacterial guilds improved model discrimination further. However, experimental designs considering measurements of AT metabolites were most informative, highlighting that environmental fate studies should prioritise measuring metabolites for elucidating active AT degradation pathways in soils. Our results suggest that applying model‐based prospective OD will maximise knowledge gains on soil systems from laboratory and field experiments.
  • Thumbnail Image
    ItemOpen Access
    Die Quellstärke in der Sickerwasserprognose : Möglichkeiten und Grenzen von Labor- und Freilanduntersuchungen
    (2010) Mackenberg, Sylvia; Metzger, Jörg W. (Prof. Dr. rer. nat. habil.)
    Den Umgang mit kontaminierten Böden und Standorten im Rahmen des Boden- und Grundwasserschutzes regeln in Deutschland das Bundes-Bodenschutzgesetz und die Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV). Die Durchführung einer Sickerwasserprognose dient der Gefährdungsabschätzung einer Grundwasserkontamination durch Bodenbelastungen. Gemäß der BBodSchV umfasst sie Untersuchungen zur Mobilisierbarkeit von Stoffen durch das Bodensickerwasser sowie eine Transportbetrachtung der gelösten Stoffe bis zum Ort der Beurteilung, die Grenze zwischen der ungesättigten und der gesättigten Bodenzone. Neben dieser bundesweit geltenden Verordnung existieren landesinterne Regelungen sowie Verfahrensvorschläge in der Baustoffbranche zum Umgang mit Baustoff und Recyclingprodukten. Allen Fragestellungen gemein ist die Abschätzung der im Sickerwasser gelösten Stoffkomponenten sowie ihrer Konzentrationen nach dem Passieren eines kontaminierten Materials, was als Quellstärke bezeichnet wird. Ziel der vorliegenden Arbeit war es, Aussagen über die Vergleichbarkeit der in diesen Testverfahren erzielbaren Ergebnisse abzuleiten. Weiterhin stand die potenzielle Übertragbarkeit von Ergebnissen, die in Laborversuchen zur Bestimmung der Quellstärke im Rahmen einer Sickerwasserprognose ermittelt werden, auf reale Verhältnisse im Fokus der Untersuchungen. Basierend auf einer Beurteilung der Praxisrelevanz der einzelnen Laborverfahren sollte abschließend ein Verfahrensvorschlag zur Bestimmung der Quellstärke erarbeitet werden: In Batchversuchen wurden der Einfluss des Wasser-Feststoffverhältnisses (WFV) auf die qualitative und quantitative stoffliche Zusammensetzung des Eluats sowie die potenzielle Mobilisierbarkeit von Schadstoffe untersucht. Die Erhöhung des WFV bei anorganischen Stoffkomponenten führte in der Regel zu einer Verringerung der Stoffkonzentration. Im Gegensatz dazu wurden bei Materialien, die mit polycyclischen aromatischen Kohlenwasserstoffen (PAK) kontaminiert waren, unabhängig vom jeweiligen WFV immer konstante PAK-Konzentrationen gemessen. Vergleichbare Ergebnisse wurden in Laborsäulenversuchen bei voller Wassersättigung erzielt. Aufgetragen über das WFV nehmen die Konzentrationen der meisten anorganischen Stoffkomponenten bei stationären Versuchsbedingungen mit zunehmender Versuchsdauer ab. Die PAK-Konzentrationen wiesen konstante Werte auf. Im Rahmen der Untersuchungen zum Einfluss der Schichthöhe wurde die absolute Kontaktzeit zwischen dem Eluat und dem Untersuchungsmaterial (Aufenthaltsdauer des Eluats in der Säule) variiert. Bei gleichem WFV entstanden keine Konzentrationsunterschiede aufgrund einer größeren Schichthöhe. Auch die Verringerung der Flussrate und damit eine Erhöhung der spezifischen Kontaktzeit (direkter Kontakt zwischen Eluat und Bodenmatrix pro Wegstrecke) führte bei anorganischen Schadstoffen nur in wenigen Fällen zu einer Konzentrationsänderung. Für PAK wurden unterschiedliche Ergebnisse in Abhängigkeit des pH-Werts erzielt. Bei einem pH-Wert von 8 wurde eine Konzentrationsabnahme um mehrere Größenordnungen registriert, bei einem pH-Wert von 12 zeigte sich keine Änderung der Konzentration. Diese Unterschiede wurden auf mikrobiologische Aktivität bei einem pH-Wert von 8 zurückgeführt, die in einem basischen Milieu weitestgehend unterbunden wird. Um die Übertragbarkeit der Ergebnisse von Laboruntersuchungen auf Feldsituationen beurteilen zu können, wurden Versuche mit Laborlysimetern und Freilandsäulen unter Teilsättigung durchgeführt. Für PAK führen Laborversuche häufig zu einer Überschätzung des Gefährdungspotenzials, da ein biologischer Abbau bei vollständiger Wassersättigung stark gehemmt wird. Die im Labor ermittelten Konzentrationen anorganischer Stoffkomponenten stimmten größenordnungsmäßig mit den Konzentrationen der Freilandversuche überein. Infolge natürlich wechselnder Niederschläge und Temperaturschwankungen wichen die im Freiland gemessenen Konzentrationen bei gleichem WFV immer wieder von den Konzentrationen der Laborversuche unter stationären Bedingungen ab. Basierend auf den Ergebnissen der Untersuchungen wurde ein Vorschlag für ein praktisches Verfahren zur Bestimmung der Quellstärke ausgearbeitet, der die Aspekte Wirtschaftlichkeit und Praktikabilität der Durchführung, insbesondere im Hinblick auf eine akzeptable Versuchsdauer, vereint. Das stufenweise Vorgehen unterscheidet zwischen Materialien die mit anorganischen Schadstoffen bzw. Materialien die mit PAK belastet sind. Zu Beginn der Quellstärkebestimmung von Materialien mit anorganischen Schadstoffen stehen einfache Batchversuche. In Abhängigkeit der daraus erzielbaren Ergebnisse folgen gegebenenfalls Laborsäulenuntersuchungen mit variierbaren Fließbedingungen. Die Quellstärke PAK-haltiger Materialien wird in Abhängigkeit ihres jeweiligen pH-Werts ebenfalls anhand einfacher Batchversuche oder anhand von aufwändigeren Laborsäulenuntersuchungen mit einer Wasserteilsättigung der eingebauten Materialschicht ermittelt.
  • Thumbnail Image
    ItemOpen Access
    Statistical downscaling of extremes of precipitation in mesoscale catchments from different RCMs and their effects on local hydrology
    (2011) Alam, Muhammad Mahboob; Bardossy, Andras (Prof. Dr. rer. nat. Dr. -Ing.)
    Global climate models are the only available comprehensive tools for studying the affects of climate change on our earth in terms of changes in different meteorological and hydrological variables in future. Precipitation and temperature are two of the most important meteorological variables with regards to their affects on other meteorological (e.g. humidity, evaporation etc.) and hydrological (e.g. river runoff) variables and on human life (e.g. food fibre production, economy etc.). Among other important local and large scale phenomenon that affects the occurrence and amount of precipitation (and severity of temperature), geographical and topographical conditions perhaps play most important role in the behaviour of these variables in certain area. This makes the two variables more or less local phenomenons that need to be specifically studied for each area of interest individually. Unfortunately the scale at which global climate models (GCMs) operate is too large for any meaningful study to be performed related to future patterns of these two variables on local scale. Different methodologies have thus been developed to downscale (i.e. to increase the resolution of) GCM data to the local scale. The two broad categories of downscaling methodologies are statistical and dynamical downscaling. In statistical downscaling methodology, an attempt is made to develop a relationship between large scale GCM modelled variable (called predictor) and local scale observed/measured variable (called predictant). Assuming that in future this relationship will hold, the relationship is used to predict local scale predictand for future simulated scenarios of predictor. In dynamical downscaling (the so called regional climate models (RCMs)) on the other hand, an attempt is made to embed a complete physical model of more or less the same complexity as GCM, in a GCM and upon receiving values from GCM at its boundaries, recalculate all possible physical formulations at a much finer scale. The local conditions are thus taken in to account and the results are believed to be more suitable for local scale studies. Both downscaling methodologies have been extensively applied in climate change and impact studies around the world with varying degree of success and new techniques are consistently being developed to improve upon them. Both methodologies have associated advantages and disadvantages. While statistical downscaling is computationally much cheaper than RCMs, statistical downscaling is based on basic assumption of stationarity which is sometimes hard to justify. RCMs on the other hand although attempt to solve physical equations at local scale, does also inherit bias from the parent GCM. This thesis presents statistical downscaling methodology which attempts to correct for the biases that are inherited by different RCMs. Three different RCMs are considered for German part of Rhine basin and using bias correction methodology based on correction of quantiles of precipitation (and temperature for some studies), new scenarios of precipitation are developed. Further, a distributed version of conceptual hydrological model HBV is calibrated and validated for German part of Rhine basin and raw and downscaled RCM scenarios of precipitation are fed into the model to ascertain the future hydrological regime in face of climate change for this important river. The downscaling procedure briefly discussed above was applied in two ways. In the first case the statistical downscaling methodology was performed on RCM data without considering any constraint during quantile-quantile exchange between RCM control and scenario runs. In the second case, the quantile-quantile exchange was conditioned on occurrence of certain circulation pattern. It was briefly discussed above how precipitation (occurrence and amount) is conditioned by certain phenomenon. In addition to geographical and topographical location, precipitation also depends upon large scale circulation patterns. Thus it was assumed that conditioning the downscaling methodology also on circulation patterns would bring about better results. To realize above concept, classification of circulation patterns is performed. Fuzzy rule based classification methodology is used to classify circulation patterns. Two new methodologies of classification of circulation patterns are presented in this thesis. One is based on low flow conditions in rivers in the study area and the other is based on clustering of precipitation stations. The new classification methodology is believed to provide better classification of circulation patterns in that the difference between the individual classes is enhanced and similarity among the same class intensified. A classification analysis measure called wetness index was developed and used to identify critical circulation patterns among the classified circulation patterns. Critical circulation patterns were identified for extreme wet and dry conditions and it was shown that all extreme cases of floods and droughts are caused by identified critical CPs. This thesis also presents and applies another statistical downscaling methodology based on multivariate autoregressive model of order 1 (one). The methodology makes use of the classification of circulation patterns described above. The parameters of the autoregressive model depend upon the circulation patterns. The methodology is used for number of head catchments in southern and eastern Germany. Head catchments by definition have very quick response time to any significant precipitation event. They contribute quickly to the surface runoff and if they are head catchments of larger rivers, may also result in bigger flood events. Downscaling of precipitation was performed for these catchments by using mean sea level pressure (MSLP) as predictor and local station precipitation as predictant. The model was developed such that ensemble of daily precipitation could be produced. Thereby enabling one to estimate associated uncertainty. Finally drought analysis are performed for German part of Rhine basin using Palmer drought severity index. A FORTRAN routine is developed which can calculate different kind of drought indices such as Palmer drought severity index, Palmer hydrological drought index, and monthly moisture anomaly index for certain catchment. The program developed is also capable of simultaneously mapping the results. The mapping of results makes it possible to ascertain the severity of drought over the larger area. The analysis of drought is performed for observational gridded data set and for control and A1B scenarios of three different RCMs.
  • Thumbnail Image
    ItemOpen Access
    Large-scale high head pico hydropower potential assessment
    (Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2018) Schröder, Hans Christoph; Wieprecht, Silke (Prof. Dr.-Ing.)
    Due to a lack of site-related information, Pico hydropower (PHP) has hardly been a projectable resource so far. This is particularly true for large area PHP potential information that could open a perspective to increase the size of development projects by aggregating individual PHP installations. The present work is extending the capabilities of GIS based hydropower potential assessment into the PHP domain through a GIS based PHP potential assessment procedure that facilitates the discrimination of areas without high head PHP potential against areas with PHP potential and against areas with so called “favorable PHP potential”. The basic unit of the spatial output is determined by the underlying PHP potential definition of this work: a standardized PHP installation and the required hydraulic source, together called standard unit, are located on an area of one square kilometer. The gradation of the output is a consequence of the verification techniques. Several large area PHP potential field assessment methods, based on contemplative analysis techniques, are developed in this work. Field assessments were conducted in Yunnan Province/China, Costa Rica, Ecuador and Sri Lanka. The aim for all field assessments is to get a comprehensive view on the PHP potential distribution of the entire country/province. Application of the GIS based PHP potential assessment procedure is aimed at the global tropical and subtropical regions.
  • Thumbnail Image
    ItemOpen Access
    Effects of enzymatically induced carbonate precipitation on capillary pressure : saturation relations
    (2022) Hommel, Johannes; Gehring, Luca; Weinhardt, Felix; Ruf, Matthias; Steeb, Holger
    Leakage mitigation methods are an important part of reservoir engineering and subsurface fluid storage, in particular. In the context of multi-phase systems of subsurface storage, e.g., subsurface CO2 storage, a reduction in the intrinsic permeability is not the only parameter to influence the potential flow or leakage; multi-phase flow parameters, such as relative permeability and capillary pressure, are key parameters that are likely to be influenced by pore-space reduction due to leakage mitigation methods, such as induced precipitation. In this study, we investigate the effects of enzymatically induced carbonate precipitation on capillary pressure-saturation relations as the first step in accounting for the effects of induced precipitation on multi-phase flow parameters. This is, to our knowledge, the first exploration of the effect of enzymatically induced carbonate precipitation on capillary pressure-saturation relations thus far. First, pore-scale resolved microfluidic experiments in 2D glass cells and 3D sintered glass-bead columns were conducted, and the change in the pore geometry was observed by light microscopy and micro X-ray computed tomography, respectively. Second, the effects of the geometric change on the capillary pressure-saturation curves were evaluated by numerical drainage experiments using pore-network modeling on the pore networks extracted from the observed geometries. Finally, parameters of both the Brooks-Corey and Van Genuchten relations were fitted to the capillary pressure-saturation curves determined by pore-network modeling and compared with the reduction in porosity as an average measure of the pore geometry’s change due to induced precipitation. The capillary pressures increased with increasing precipitation and reduced porosity. For the 2D setups, the change in the parameters of the capillary pressure-saturation relation was parameterized. However, for more realistic initial geometries of the 3D samples, while the general patterns of increasing capillary pressure may be observed, such a parameterization was not possible using only porosity or porosity reduction, likely due to the much higher variability in the pore-scale distribution of the precipitates between the experiments. Likely, additional parameters other than porosity will need to be considered to accurately describe the effects of induced carbonate precipitation on the capillary pressure-saturation relation of porous media.