Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 62
  • Thumbnail Image
    ItemOpen Access
    Finite element based design of timber structures
    (2023) Töpler, Janusch; Schweigler, Michael; Lemaître, Romain; Palma, Pedro; Schenk, Martin; Grönquist, Philippe; Tapia Camú, Cristóbal; Hochreiner, Georg; Kuhlmann, Ulrike
  • Thumbnail Image
    ItemOpen Access
    Investigation of oxide layer development of X6CrNiNb18-10 stainless steel exposed to high-temperature water
    (2024) Veile, Georg; Hirpara, Radhika; Lackmann, Simon; Weihe, Stefan
    The oxide layer development of X6CrNiNb18-10 (AISI 347) during exposure to high-temperature water has been investigated. Stainless steels are known to form a dual oxide layer in corrosive environments. The secondary Fe-rich oxide layer has no significant protective effect. In contrast, the primary Cr-rich oxide layer is known to reach a stabilized state, protecting the base metal from further oxidation. This study’s purpose was to determine the development of oxide layer dimensions over exposure time using SEM, TEM and EDX line scans. While a parabolic development of Cr in the protective primary layer and Fe in the secondary layer was observed, the dimensions of the Ni layer remained constant. Ni required the presence of a pronounced Fe-rich secondary layer before being able to reside on the outer secondary layer. With increasing immersion time, the Ni element fraction surpassed the Cr element fraction in the secondary layer. Oxide growth on the secondary layer could be observed. After 480 h, nearly the entire surface was covered by the outer oxide layer. In the metal matrix, no depletion of Cr or Ni could be observed over time; however, an increased presence of Cr and Ni in the primary layer was found at the expense of Fe content. The Nb-stabilized stainless steel was subject to the formation of Niobium pentoxide (Nb2O5), with the quantity and magnitude of element fraction increasing over exposure time.
  • Thumbnail Image
    ItemOpen Access
    Design of adhesively bonded timber-concrete composites : bondline properties
    (2023) Grönquist, Philippe; Müller, Katharina; Mönch, Simon; Frangi, Andrea
  • Thumbnail Image
    ItemOpen Access
    Feasibility study on additive manufacturing of ferritic steels to meet mechanical properties of safety relevant forged parts
    (2022) Mally, Linda; Werz, Martin; Weihe, Stefan
    Additive manufacturing processes such as selective laser melting are rapidly gaining a foothold in safety-relevant areas of application such as powerplants or nuclear facilities. Special requirements apply to these applications. A certain material behavior must be guaranteed and the material must be approved for these applications. One of the biggest challenges here is the transfer of these already approved materials from conventional manufacturing processes to additive manufacturing. Ferritic steels that have been processed conventionally by forging, welding, casting, and bending are widely used in safety-relevant applications such as reactor pressure vessels, steam generators, valves, and piping. However, the use of ferritic steels for AM has been relatively little explored. In search of new materials for the SLM process, it is assumed that materials with good weldability are also additively processible. Therefore, the processability with SLM, the process behavior, and the achievable material properties of the weldable ferritic material 22NiMoCr3-7, which is currently used in nuclear facilities, are investigated. The material properties achieved in the SLM are compared with the conventionally forged material as it is used in state-of-the-art pressure water reactors. This study shows that the ferritic-bainitic steel 22NiMoCr3-7 is suitable for processing with SLM. Suitable process parameters were found with which density values > 99% were achieved. For the comparison of the two materials in this study, the microstructure, hardness values, and tensile strength were compared. By means of a specially adapted heat treatment method, the material properties of the printed material could be approximated to those of the original block material. In particular, the cooling medium/cooling method was adapted and the cooling rate reduced. The targeted ferritic-bainitic microstructure was achieved by this heat treatment. The main difference found between the two materials relates to the grain sizes present. For the forged material, the grain size distribution varies between very fine and slightly coarse grains. The grain size distribution in the printed material is more uniform and the grains are smaller overall. In general, it was difficult and only minimal possible to induce grain growth. As a result, the hardness values of the printed material are also slightly higher. The tensile strength could be approximated to that of the reference material up to 60 MPa. The approximation of the mechanical-technological properties is therefore deemed to be adequate.
  • Thumbnail Image
    ItemOpen Access
    Lebensdauervorhersage von Mischschweißverbindungen für Hochtemperaturbeanspruchung
    (Stuttgart : Materialprüfungsanstalt (MPA), Universität Stuttgart, 2020) Schleyer, Johannes Martin; Seidenfuß, Michael (apl. Prof. Dr.-Ing.)
    Die Nutzung erneuerbarer Energien soll langfristig die Energieerzeugung durch konventionelle, fossil befeuerte Kraftwerke ablösen. Bis zur vollständigen Realisierung dieses Ziels muss eine ausreichende Anzahl konventioneller Kraftwerke verbleiben, um Fluktuationen in Stromerzeugung und -abruf auszugleichen. Folglich wird auch für diese Kraftwerke weiterhin die Steigerung des Wirkungsgrades angestrebt, was Ausgangspunkt einiger nationaler und internationaler Forschungsinitiativen ist. In Dampfkraftwerken wird der höhere Wirkungsgrad durch eine Anhebung von Dampftemperatur und -druck bis 700 °C und 350 bar ermöglicht, was jedoch zugleich die Beanspruchung der Werkstoffe immens erhöht. Nach derzeitigem Forschungsstand kann diese nur von Nickelbasiswerkstoffen über ausreichend lange Zeiträume ertragen werden. Zugleich ist der Einsatz solcher Werkstoffe in Kraftwerkskomponenten technologisch herausfordernd und aufgrund der kostenintensiven Legierungselemente aus ökonomischer Sicht zu beschränken. Folglich sollen in den Bereichen niedrigerer Temperaturen weiterhin geeignete (u.a. 9-12%Cr-)Stähle verwendet werden, was zwangsläufig zu Mischverbindungen zwischen Nickelbasiswerkstoffen und Stählen führt. Bei der Zeitstandbeanspruchung solcher Mischverbindungen mit modernen 9-12%Cr-Stählen zeigt sich wiederkehrend ein sehr verformungsarmer Bruch entlang der Fusionslinie zum Stahl. Durch die geringe Verformung bis zum Bruch und die stark lokalisierte Porenschädigung lässt sich eine derartige Mischverbindung nur schwer überwachen und es liegt gegenwärtig kein „Leck-vor-Bruch“-Konzept vor. Insofern stellt der Fusionslinienbruch ein hohes, schwer kalkulierbares Risiko dar. Zugleich lassen sich Zeitstandversuche verschiedener Werkstoffkombinationen nicht immer zu einem gemeinsamen Erklärungsansatz harmonisieren. Dies gilt insbesondere mit Blick auf den Zusammenhang zwischen Spannung und der Wahrscheinlichkeit des Auftretens dieser Fusionslinienbrüche. Aktuelle Veröffentlichungen machen darüber hinaus deutlich, dass der umfassend erforschte Schädigungsmechanismus für solche Schweißverbindungen zwischen Nickellegierungen und 2,25%Cr-Stählen nicht unbedingt auf die Verbindungen mit 9-12%Cr-Stählen übertragbar ist. Darüber hinaus ist es bisher nicht möglich, das Auftreten der Fusionslinienbrüche befriedigend mittels Finite-Elemente-Methode zu beschreiben. Verfügbare Ansätze für artgleiche Verbindungen können Mischbrüche (Bruch zum Teil entlang der Fusionslinie und zum Teil in der Wärmeeinflusszone) allenfalls ansatzweise darstellen. Bereits für artgleiche Schweißverbindungen ist zudem keine quantitative Aussage über Bruchlage und -zeitpunkt möglich. In der vorliegenden Arbeit wird daher eine Schweißverbindung der Gusswerkstoffe Alloy 625 und GX12CrMoVNbN9-1 untersucht. Neben der Charakterisierung des Zeitstandverhaltens erfolgt eine umfangreiche Untersuchung der Bruchflächen. Entsprechend noch offener Fragestellungen der bisherigen Literatur, betrachten die Untersuchungen dabei insbesondere die Mikrostruktur nahe der Fusionslinie (Fusionslinienarten, Karbide, Grenzschichtband). Die Ergebnisse werden im Kontext der Literatur und weiterer Untersuchungen an weiteren Nickelbasiswerkstoff-Stahl-Verbindungen, die an der Materialprüfungsanstalt Universität Stuttgart durchgeführt wurden, diskutiert. Eine hierfür erarbeitete Kategorisierung der auftretenden Bruchaussehen ermöglicht dabei zunächst eine einheitliche Bezeichnung der unterschiedlichen Bruchaussehen. Im weiteren Verlauf werden Einflussfaktoren herausgearbeitet und einige Literatur-Schlussfolgerungen erneut bewertet. Im zweiten Teil der vorliegenden Arbeit wird ein dehnungsbasiertes Versagenskriterium zur numerischen Bewertung von Schweißverbindungen unter Kriechbeanspruchung, mit besonderem Augenmerk auf Fusionslinienbrüche, vorgestellt. Das Versagenskriterium beruht auf der abhängig vom Zustand der Spannungsmehrachsigkeit berechneten Verformungsfähigkeit des Werkstoffs (Grenzdehnung) und deren Erreichen im beanspruchten Querschnitt. Es wird in seiner Eignung schrittweise erprobt, zunächst an Grundwerkstoffversuchen (einachsig und mehrachsig beansprucht), dann an artgleichen Schweißverbindungen (Zeitstandproben und Druckbehälter) und schließlich an Mischverbindungen (Stahl-Stahl, Nickelbasis-Stahl). Ergänzend wird der Einfluss einer kriechschwachen Zone an der Fusionslinie sowie der Einfluss der Festigkeit des Schweißguts auf den Fusionslinienbruch numerisch untersucht. Für eine geeignete Modellierung des Kriechverhaltens von Schweißverbindungen mittels Kriechgesetz, müssen auch für die Wärmeeinflusszonen die Materialparameter identifiziert werden. Da von diesen Zonen das Verformungsverhalten selten bekannt ist, wird auf Basis einer Datensammlung ein Ansatz zur Abschätzung des Werkstoffverhaltens über die Grundwerkstoff-Eigenschaften vorgestellt. Die vorliegende Arbeit dient damit zur Erweiterung des Kenntnisstands zum Versagensverhalten von artfremden Nickelbasiswerkstoff-Stahl-Schweißverbindungen unter Kriechbeanspruchung, auch von Gusswerkstoffen. Sie führt offene Fragestellungen fort und liefert Ansätze, bisher widersprüchliche Ergebnisse zu harmonisieren. Zudem wird ein Modellierungsvorgehen für das Kriechverhalten der Wärmeeinflusszone in Schweißverbindungen sowie ein Versagenskriterium vorgestellt, welches sich für Versuche an Grundwerkstoffen und artgleichen sowie artfremden Schweißverbindungen eignet.
  • Thumbnail Image
    ItemOpen Access
    A numerical method for the generation of hierarchical Poisson Voronoi microstructures applied in micromechanical finite element simulations : part I: method
    (2020) Schneider, Y.; Weber, U.; Wasserbäch, W.; Zielke, R.; Schmauder, S.; Tillmann, W.
    Poisson Voronoi (PV) tessellations as artificial microstructures are widely used in investigations of material deformation behaviors. However, a PV structure usually describes a relative homogeneous field. This work presents a simple numerical method for generating 2D/3D artificial microstructures based on hierarchical PV tessellations. If grains/particles of a phase cover a large size span, the concept of “artificial phases” can be used to create a more realistic size distribution. From case to case, detailed microstructural features cannot be directly achieved by commercial or free softwares, but they are necessary for a deep or thorough study of the material deformation behavior. PV tessellations created in our process can fulfill individual requirements from material designs. Another reason to use PV tessellations is due to the limited experimental data. Concerning the application of PV microstructures, four examples are given. The FE models and results will be presented in consecutive works, i.e. “part II: applications”.
  • Thumbnail Image
    ItemOpen Access
    Reversible inter-particle bonding in SPH for improved simulation of friction stir welding
    (2022) Shishova, Elizaveta; Panzer, Florian; Werz, Martin; Eberhard, Peter
    Friction stir welding (FSW) is a complex joining process which is governed by multiple intertwined physical phenomena. Besides friction, inelastic heat generation, and heat conduction, it involves high plastic deformations, resulting in a need for a numerical method being able to handle all these. Such a scheme is smoothed particle hydrodynamics (SPH), which is a mesh-free computational technique. Absence of a fixed mesh results in the ability of the method to deal with another challenge of friction stir welding, a coalescence of initially separate workpieces into one due to bonding mechanisms. The background of this phenomenon is a transition from contact between two pieces to one continuum due to enormous changes in several material condition, such as temperature, pressure, strain, and strain rate. This work deals with a new development related to bonding, which will provide deeper understanding about the physical weld formation during FSW. The SPH framework must be extended to consider this bonding mechanism. This involves the bonding criterion definition, the interaction type change, and the SPH-SPH contact formulation. Then, the implementation is tested for two different examples, a compression test and FSW.
  • Thumbnail Image
    ItemOpen Access
    Experimental investigations of micro-meso damage evolution for a Co/WC-type tool material with application of digital image correlation and machine learning
    (2021) Schneider, Yanling; Zielke, Reiner; Xu, Chensheng; Tayyab, Muhammad; Weber, Ulrich; Schmauder, Siegfried; Tillmann, Wolfgang
    Commercial Co/WC/diamond composites are hard metals and very useful as a kind of tool material, for which both ductile and quasi-brittle behaviors are possible. This work experimentally investigates their damage evolution dependence on microstructural features. The current study investigates a different type of Co/WC-type tool material which contains 90 vol.% Co instead of the usual <50 vol.%. The studied composites showed quasi-brittle behavior. An in-house-designed testing machine realizes the in-situ micro-computed tomography (µCT) under loading. This advanced equipment can record local damage in 3D during the loading. The digital image correlation technique delivers local displacement/strain maps in 2D and 3D based on tomographic images. As shown by nanoindentation tests, matrix regions near diamond particles do not possess higher hardness values than other regions. Since local positions with high stress are often coincident with those with high strain, diamonds, which aim to achieve composites with high hardnesses, contribute to the strength less than the WC phase. Samples that illustrated quasi-brittle behavior possess about 100-130 MPa higher tensile strengths than those with ductile behavior. Voids and their connections (forming mini/small cracks) dominant the detected damages, which means void initiation, growth, and coalescence should be the damage mechanisms. The void appears in the form of debonding. Still, it is uncovered that debonding between Co-diamonds plays a major role in provoking fatal fractures for composites with quasi-brittle behavior. An optimized microstructure should avoid diamond clusters and their local volume concentrations. To improve the time efficiency and the object-identification accuracy in µCT image segmentation, machine learning (ML), U-Net in the convolutional neural network (deep learning), is applied. This method takes only about 40 min. to segment more than 700 images, i.e., a great improvement of the time efficiency compared to the manual work and the accuracy maintained. The results mentioned above demonstrate knowledge about the strengthening and damage mechanisms for Co/WC/diamond composites with >50 vol.% Co. The material properties for such tool materials (>50 vol.% Co) is rarely published until now. Efforts made in the ML part contribute to the realization of autonomous processing procedures in big-data-driven science applied in materials science.
  • Thumbnail Image
    ItemOpen Access
    Testing and evaluation of anchor channels under fatigue loading
    (2020) Fröhlich, Thilo; Lotze, Dieter
    Cast-in anchor channels are used to connect steel components to concrete structures e.g., for elevators, cranes or machines, where repeated load cycles require verification against fatigue failure. The fatigue resistance of anchor channels may be determined by tests according to the interactive method, which provides a complete description of the S/N curve from one to infinite load cycles according to the current assessment document. This procedure differs from conventional fatigue concepts, which do not consider loads that are part of low cycle fatigue, but also question the general existence of an endurance limit. An alternative approach presented in this paper is based on the assumption that the S/N curve can be approximated by a bilinear function. The procedure for the evaluation of fatigue tests on anchor channels embedded in concrete is described. A comparison with the current qualification criteria is given by a test example to discuss the applicability of the proposed method.