Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    A fully coupled thermomechanical 3D model for all phases of friction stir welding
    (2016) Hoßfeld, Max
    Although friction stir welding (FSW) has made its way to industrial application particularly in the last years, the FSW process, its influences and their strong interactions among themselves are still not thoroughly understood. The lack of understanding mainly arises from the adverse observability of the actual process with phenomena like material ow and deposition, large material deformations plus their complex thermo-mechanical interactions determining the weld formation and its mechanical properties. A validated numerical process model may be helpful for closing this gap as well as for an isolated assessment of individual influences and phenomena. Hereby such a model will be a valuable assistance for process and especially tool development. In this study a Coupled Eulerian-Lagrangian (CEL) approach with Abaqus V6.14 is used for modeling the whole FSW process within one continuous model. The resolution reached allows not only simulating the joining of two sheets into one and real tooling geometries but also burr and internal void formation. Results for temperature fields, surface and weld formation as well as process forces are shown and validated.
  • Thumbnail Image
    ItemOpen Access
    Projektabschlussbericht zum "Teilvorhaben Korrosionsverhalten" (FKZ 0325497B (MPA) + FKZ 0325497A (DLR)) des Verbundvorhabens "MS-Store - Flüssigsalzspeicher-Testanlage und neue Fluide"
    (2018) Kaesche, Stefanie; Rückle, Dagmar; Bauer, Thomas; Bonk, Alexander
    Ziel des Teilvorhabens „Korrosionsverhalten“ im Verbundprojekt MS-Store - Flüssigsalzspeicher-Testanlage und neue Fluide war es, Anforderungen an die zu verwendenden Werkstoffe, die durch hohe Temperaturen bei Energiespeichern in solarthermischen Kraftwerken auftreten, hinsichtlich des Korrosionsverhaltens zu untersuchen, um die Lebensdauer solcher Kraftwerke zu erhöhen, sowie substantielle wissenschaftliche Ergebnisse in diesem Anwendungsgebiet zu erhalten. Mittels Auslagerungsversuchen bei 560°C wurden die Abtragsraten für verschiedene Stähle in unterschiedlichen Nitratsalzmischungen in Abhängigkeit von der Auslagerungsdauer isotherm und zyklisch bestimmt. Im Anschluss wurden mittels diverser elektronenmikroskopischer und röntgenografischer Untersuchungsmethoden (FIB, REM, EDX; TEM; XRD) die Oxidschichtentwicklung und -beschaffenheit, die Phasenzusammensetzung der Oxidschicht, die Gefügestruktur des Grundwerkstoffs, sowie der erfolgte korrosive Angriff analysiert. Mittels elektrochemischer Prüfmethoden (OCP, IE, EIS) wurde das Korrosionsverhalten der Stähle in-situ bei Temperaturen zwischen 410 und 560°C und in Abhängigkeit der Reinheit der Salzschmelze analysiert, sowie die Stabilität der Oxidschichten evaluiert. Es zeigte sich eine eindeutige Überlegenheit der Korrosionsbeständigkeit der untersuchten Cr,Ni-Stähle gegenüber des hochwarmfesten Cr-Stahls, speziell in Salzschmelzen die Chloridgehalte ab 0,5 Gew.-% aufweisen. Weiterhin ließ sich eine eindeutige Abhängigkeit des Korrosionsverhaltens von der gewählten Temperatur nachweisen; die Beständigkeit ist bei 410°C deutlich höher, als bei 560°C. Die mehrlagigen Oxidschichten bestehen aus Cr,Fe-Mischoxiden, sowie reinen Cr-/Fe-Oxiden. Sie weisen eine hohe Porosität, sowie eine schlechte Haftung auf dem Grundmaterial auf. Nach langer Auslagerung entstehen zusätzlich Na,Fe-reiche Oxide. Im Grundmaterial bildeten sich durch Stickstoffeintrag aus der Salzschmelze an den Korngrenzen oder auch im kompletten Gefüge Gefügeveränderungen, in Form von Cr-Nitriden. Neuartige elektrochemische Untersuchungen in Nitratsalzschmelzen bei hohen Temperaturen wurden mittels elektrochemischer Impedanzspektroskopie (EIS) durchgeführt. Dabei wurde die Abhängigkeit des Korrosionsverhaltens von Temperatur, Salzreinheit und Beschaffenheit und Stabilität der Oxidschichten ermittelt. EIS eignet sich sehr gut, um schnell fundierte Aussagen über ein vorliegendes Korrosionssystem zu treffen und kann auch in anderen Schmelzen, sowie anderen Werkstoffen oder Parametern eingesetzt werden. Die quantitative Auswertung dieser Messmethode ist sehr komplex und benötigt anwendungsbasierte Weiterentwicklung. Dennoch konnte das Auftreten des Breakaway-Effektes mittels dieser Methodik bestätigt werden. Außerdem wurde die Tendenz von Chrom zur Lösung in der Salzschmelze festgestellt, sowie Änderungen im Nitrat/Nitrit-Verhältnis, bedingt durch Zersetzungsreaktionen der Salzschmelze beobachtet. Diese Effekte können zu veränderten Eigenschaften der Schmelze hinsichtlich ihrer Wärmespeicherkapazität, ihrer generellen Stabilität und ihrer Korrosivität führen. Die im Verlauf des Teilvorhabens gewonnenen Erkenntnisse erweitern den bisher in der Fachliteratur präsentierten Kenntnisstand des Korrosionsverhaltens von anwendungsrelevanten Stählen in Nitratsalzschmelzen deutlich. Sie ermöglichen eine gezielte Materialauswahl für Planer und Konstrukteure von solarthermischen Kraftwerken.
  • Thumbnail Image
    ItemOpen Access
    Development of a viscoplastic-damage model for creep-fatigue FE-calculations of the lead-free SnAgCu solder alloy for automotive applications
    (Stuttgart : Materialprüfungsanstalt (MPA), Universität Stuttgart, 2019) Métais, Benjamin; Weihe, Stefan (Prof. Dr.-Ing)
    Automotive electronic devices are exposed to substantially harsher thermomechanical loads compared to commercial consumer electronic products. Inside an electronic device, there is a large number of solder joints, supporting the electrical as well as the mechanical interconnections. In terms of mechanical properties, solder joints are a weak point of the whole device assembly and can ultimately determine its reliability. In the past two decades, significant efforts have been made to set up methodologies for lifetime prediction of solder joints in automotive applications. Finite Element Analysis (FEA) is being increasingly employed with the aim to support product design and qualification process. However, constitutive FE models for solder alloys capable of describing their mechanical behavior at the relevant conditions of automotive applications are still not widely established. The currently employed state of the art material models applied in industry and research are based on uni-axial stationary creep. Thus, they naturally fail to describe properly the complex cyclic time-, strain rate, and temperature dependent behavior under the full temperature range of accelerated qualification lab tests and operation conditions. Furthermore, intrinsic degradation processes due to cyclic thermo-mechanical loading are not still completely investigated and are not taken into account within FE-calculations. Current FE-reliability prediction methodologies for solder joints are not possible without the usage of lifetime models (e.g. Coffin-Manson) and their calibration on a substantial set of experimental data. Due to the lack of models mapping intrinsic material degradation, the current prediction methods remain strongly constraint to a single solder type and loading conditions used within the lifetime experiments. More advanced techniques, originally proposed for steel alloys, employ viscoplastic constitutive models and damage mechanics and provide a powerful framework for predictive FE-based lifetime assessment. The goal of the present work is to build on these concepts and extend them for usage in solder joint simulations. An important part of the methodology development is the advanced experimental characterization necessary to obtain the material behavior, which extends the currently available research activities on solder alloys. The experimental investigations are focused on the intrinsic mechanical and aging properties of a Sn-based solder alloy and used for the formulation of a suitable FE-material model within the frame of damage mechanics. Within the thesis, a material testing procedure has been developed in order to perform mechanical characterization on standardized specimens. The test program includes strain rate controlled cycling, stress relaxation phases, uniaxial and multiaxial Low Cycle Fatigue (LCF) as well as creep tests in the temperature range: -40°C up to 125°C. As a first step, the mechanical and microstructure properties of the material in the initial state prior degradation are investigated. A viscoplastic material model of two viscous functions originally proposed by Chaboche et al. has been numerically implemented for 3D simulations. The model maps the observed stress dependence on temperature, time and strain-rate of the alloy in both low and high strain rate regimes. A step by step procedure for calibration of the model parameters in the temperature range -40/125°C is detailed and discussed. As a second step, aging mechanisms are investigated by means of creep and fatigue tests. A lifetime concept based on creep-fatigue partitioning is worked out and applied for the lifetime assessment of a real Surface Mounted Device (SMD) chip resistor under temperature cycling. The method’s predictions are correlated to reported experimental lifetime data within the project LiVe [1]. The proposed creep-fatigue partitioning approach provides means for fast estimation of solder joint reliability and might be used as a support of the design process of electronic devices. Finally, a full Continuum Damage Mechanics (CDM) model, which involves intrinsic damage propagation inside the material, has been developed and implemented for 3D simulations. Based on the observed aging properties, the damage model formulation takes into account local material softening due to creep-fatigue interaction. The CDM-simulation reveals the evolution of degradation in the solder joint component throughout its complete loading history. The main findings are discussed and put into perspective for future works dedicated to the implementation of the CDM approach for reliability prognosis and engineering lifetime concepts.
  • Thumbnail Image
    ItemOpen Access
    Experimentelle, analytische und numerische Untersuchungen des Rührreibschweißprozesses
    (2016) Hoßfeld, Max; Roos, Eberhard (Prof. Dr.-Ing. habil.)
    Mit dem Rührreibschweißverfahren steht seit einigen Jahren eine Fügetechnologie zur Verfügung, mit der viele fügetechnische Problemstellungen speziell beim Fügen von Aluminiumlegierungen gelöst oder vermieden werden können. Mittels Rührreibschweißen können sämtliche Aluminiumlegierungen zuverlässig, hocheffizient und mit einem sehr hohen Verbindungswirkungsgrad gefügt werden. Dabei weisen rührreibgeschweißte Verbindungen bereits ohne Nachbehandlung sehr gute statische und zyklische Festigkeiten auf, welche meist deutlich über jenen von Schmelzschweißverfahren liegen. Darüber hinaus ist das Verfahren hoch automatisierbar und kann direkt modular in andere Fertigungsverfahren integriert werden, wodurch große wirtschaftliche und prozesstechnische Potentiale entstehen. Auf Grund dieser positiven Eigenschaften wurde Rührreibschweißen in den letzten Jahren sehr schnell vom Anwender angenommen und findet aktuell eine rasche Verbreitung in den verschiedensten Branchen. Dabei erfolgte die Übernahme des Prozesses teils erheblich schneller als Forschung wie auch Anwendungsentwicklung der anwenderseitigen Umsetzung durch eine grundlegende Beschreibung des Prozesses folgen konnten. Dies wiederum führte dazu, dass heute noch teilweise erhebliche Lücken in Verständnis und wissenschaftlicher Beschreibung selbst elementarer Bestandteile des Prozesses bestehen. Ziel dieser Arbeit ist daher, zum erweiterten Verständnis des Rührreibschweißprozesses, seiner Wirkmechanismen und Phänomene von den physikalischen Grundlagen bis hin zum Bauteilverhalten beizutragen. Hierfür wird auf ein dreigliedriges Vorgehen aus analytischer und experimenteller Charakterisierung sowie numerischer Modellierung zurückgegriffen. Dabei dienen die erstgenannten Inhalte als Basis zur physikalischen Beschreibung und Abgrenzung der Prozessphänomene und zur späteren numerischen Beschreibung. Diese soll durch eine detaillierte und physikalisch korrekte Wiedergabe den Zugang zu den nicht direkt beobachtbaren Prozessphänomenen in der Fügezone ermöglichen. Da der Rührreibschweißprozess wesentlich durch Wechselwirkungen von mechanischer Prozesswirkung und Werkstoffverhalten dominiert wird, erfolgt nach der Darstellung prozesstechnischen Grundlagen zunächst eine Charakterisierung und Modellierung der verwendeten Aluminiumlegierungen Al Mg4,5Mn0,4 und Al Mg1SiCu (EN AW-5182 und 6061) und ihrer relevanten physikalischen Größen bei prozesstypischen Bedingungen. Hierauf bauen die analytischen und experimentellen Untersuchungen des Prozesses auf. Die Charakteristiken des Prozesses werden zunächst anhand der Entwicklung von Prozessleistung und Streckenenergie mit Überdeckungsgrad und Einschweißtiefe diskutiert, wobei die selbststabilisierenden Eigenschaften des Prozesses, die Kontaktinitiierung und die Rückwirkung der statischen und dynamischen Kräfte auf die Anlagentechnik gesondert berücksichtigt werden. Aus der Summe dieser Untersuchungen wird die Wichtigkeit des Reibkontaktes zwischen Werkzeug und Werkstück für Wärmeeinbringung und Materialfluss deutlich. Diesen Ergebnissen entsprechend folgt eine isolierte Untersuchung anhand von etwa 130 Reibversuchen mittels Telemetriesystem bei gleichzeitiger Messung der Temperaturen am Kontakt, welche durch entsprechende Schweißversuche ergänzt werden. Dabei kann nach dem Reibübergang eine Mehrlagenscherung sowie ein mitrotierender Verformungszylinder am Schweißwerkzeug festgestellt werden. Durch den dann werkstoffmechanisch dominierten Reibkontakt wird es möglich, das Grundprinzip der Viskoplastizität respektive das Werkstoffmodell zur Beschreibung des Reibkontaktes zu nutzen, wodurch typischerweise nötige Annahmen entfallen können. Auf der Basis der Untersuchungen der mechanischen Prozessinitiierung baut in der Arbeit die Analyse der beiden zentralen Prozessphänomene Wärmehaushalt und Materialfluss auf. Zur Analyse des Wärmehaushaltes erfolgt zunächst eine analytische Abgrenzung anhand von physikalischer Bilanzierung und Grundgleichungen. Dem schließen sich Untersuchungen von Fügetemperatur, typischen Temperaturprofilen wie auch konduktivem und konvektivem Wärmetransport in der Fügezone an. Ein weiterer Fokus liegt auf der Beschreibung von Kontakt, Wärmeübertragung und -aufteilung zwischen Werkstück, Spindel und Spanntechnik in Abhängigkeit von Pressung und Temperatur. Eng verbunden mit diesen Inhalten ist die Untersuchung des Materialflusses. Für diesen werden zunächst die Rand- und Kontinuitätsbedingungen hergeleitet und analysiert. Danach erfolgt eine experimentelle Untersuchung anhand von Querschliffen, Mikrostrukturentwicklung sowie eingebrachten Kupferfolien. Deren Verteilung in der Schweißnaht wird für verschiedene Einschweißtiefen Computertomographie analysiert, wobei die Selbstähnlichkeit der Materialströmungsregime am Werkzeug aber auch deren unterschiedliche Ausprägungen in Abhängigkeit der Einschweißtiefen deutlich werden. Aus den Untersuchungen resultieren detaillierte Aussagen zur Formierung der Fügezone mit bandförmigen Strukturen und Ablage des Werkstoffes hinter dem Werkzeug. Im Kontext erfolgt eine gesonderte Berücksichtigung von Einflussgrößen wie Rundlauftoleranz der Spindel, Werkzeuggeometrie und Prozessparametern. Da die Formierung quasi aller Schweißimperfektionen auf einen unzureichenden Materialfluss zurückgeführt werden kann, erfolgt eine Darstellung typischer Schweißfehler und deren Ursachen. Dabei kann durch die Analyse hochdynamischer Kraftanteile ein Zugang zu den lokalen Prozessphänomenen und eine Basis für eine Methodik zur Onlinefehlerdetektion aufgezeigt werden. Abgerundet werden diese Ergebnisse durch eine Beschreibung und Diskussion der Wirkung des Rührreibschweißprozesses auf die Festigkeits- und Bauteileigenschaften. Besonderes Augenmerk liegt hierbei auf der prozessinduzierten Mikrostrukturentwicklung und der Beeinflussung der festigkeitssteigernden Mechanismen von Aluminiumlegierungen. Auf diesen Inhalten aufbauend erfolgt zur Erstellung der Simulationsmethodik zunächst eine Übersicht zu bestehenden Modellierungsansätzen sowie der zu berücksichtigenden Prozessphänomene. Die Modellierung erfolgt in der Arbeit mittels eines gekoppelten Euler-Lagrange-Ansatzes (CEL) und der Volume-of-Fluid-Methode teilweise gefüllter Zellen. Hierdurch wird es erstmals möglich, alle Prozessphasen in einem durchgängigen Modell sowie eine reale Stoßgeometrie zu simulieren. Mit Hilfe der Simulationsmethodik können die zentralen Phänomene wie auch Details und Einflüsse des Rührreibschweißprozesses detailliert vorhergesagt und analysiert sowie in Abhängigkeit von Prozessparametern, Randbedingungen und Werkzeuggeometrien optimiert werden. Ebenso wird es möglich, die Wirkung des Prozesses mit geometrischer und mikrostruktureller Ausprägung der Schweißnaht und Fehlerformierung vorherzusagen, wodurch die Optimierung der mechanischen Eigenschaften von rührreibgeschweißten Verbindungen möglich wird. Die simulativ ermittelten Prozesskräfte weisen eine sehr gute Übereinstimmung mit Experimenten auf, wobei die Abtastrate der Kräfte modernen NC-gesteuerter Anlagen entspricht.