Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 35
  • Thumbnail Image
    ItemOpen Access
    Vortex-Kern-Korrelation in gekoppelten Systemen
    (2014) Jüllig, Patrick; Schütz, Gisela (Prof. Dr.)
    In der vorliegenden Arbeit wurden strukturierte ferromagnetische Dreischichtsysteme zum einen auf ihre statische in-plane- sowie out-of-plane-Magnetisierungsverteilung als auch auf deren dynamisches Verhalten hin untersucht. Die sowohl quadratischen als auch kreisförmigen Strukturen bestanden aus zwei ferromagnetischen Lagen mit einer Dicke von jeweils 50nm, welche durch eine nicht magnetische Cu-Zwischenschicht getrennt waren. Die Dicke dieser Zwischenschicht variierte schrittweise von t(Cu)=3nm bis 15nm. Als Magnetmaterialien kamen für die untere Schicht Kobalt (Co) und für die obere Schicht das magnetisch isotrope Permalloy (Ni80Fe20) zum Einsatz. Die lateralen Abmessungen sowie das Aspektverhältnis der beiden Einzelschichten wurden so gewählt, dass der Vortexzustand die stabile Domänenkonfiguration ist. Somit resultierten zwei vertikal übereinander angeordnete Vortexkonfigurationen, sodass deren Wechselwirkung sowohl im statischen als auch im dynamischen Fall untersucht werden konnte. Aufgrund der gewählten Cu-Schichtdicke von mindestens 3nm war gewährleistet, dass die Kopplung der in-plane-Schichtmagnetisierung hauptsächlich durch die elektrostatische Streufeldenergie beeinflusst wurde und somit der Beitrag der Oszillatorischen Zwischenschichtaustauschwechselwirkung vernachlässigt werden konnte. Im Falle zweier vertikal übereinander angeordneter Vortexstrukturen kann man bezüglich der Zirkulation C (beschreibt die Orientierung der in-plane-Magnetisierung) und der Polarisation P (beschreibt die Orientierung der out-of-plane-Komponente des Vortexkerns) unter Berücksichtigung der Symmetrie vier verschiedene Konfigurationen voneinander unterscheiden: Die beiden Fälle, bei denen C und P jeweils bzw. orientiert sind, sowie die beiden Fälle, bei denen lediglich C oder P parallel ausgerichtet ist. Der erste Schritt dieser Arbeit bestand in der Probenpräparation. Als Strukturierungsverfahren kamen zum einen das Ionenstrahlätzen und zum anderen die Elektronenstrahllithographie zum Einsatz. Anhand von Röntgenbeugungsexperimenten konnte herausgefunden werden, dass beide Schichtmaterialien, sowohl das Permalloy als auch das Kobalt, eine polykristalline, fasertexturierte Schichtstruktur mit einer fcc-Gitterstruktur aufwiesen. Diese Erkenntnisse waren vor allem für die korrekte Parameterwahl für die nachfolgend durchgeführten mikromagnetischen Simulationen von großer Bedeutung. Messungen der Oberflächenrauigkeiten mittels des AFM ließen darauf schließen, dass neben dem Beitrag der Streufeldenergie ebenso korrelierte bzw. unkorrelierte Zwischenschichtrauigkeiten zur gegenseitigen Ausrichtung der in-plane-Schichtmagnetisierungen beitrugen. Mit Hilfe von SQUID-Messungen bei T=40K an unstrukturierten Co/Cu/Py-Dreischichtsystemen konnte nachgewiesen werden, dass erst für Proben mit Cu-Schichtdicken ab t(Cu)=2,0nm beide ferromagnetische Materialien chemisch voneinander getrennt vorlagen und keine direkte ferromagnetische Kopplung aufgrund von sogenannten Pinholes auftrat. Somit konnte geschlussfolgert werden, dass erst ab einer Dicke von t(Cu) größer gleich 2,0nm eine vollständig geschlossene Cu-Schicht vorlag. Die ersten statischen in-plane-Messungen am STXM zeigten, dass Proben, welche im as-sputtered Zustand eine undefinierte metastabile Mehrdomänenkonfigurationen aufwiesen, durch einen Entmagnetisierungsprozess in den stabilen Vortexzustand überführt werden konnten. Neben antiparallel gekoppelten Systemen bezüglich der Zirkulation C wurden mit einer ähnlich hohen Wahrscheinlichkeit Proben mit einer parallelen Ausrichtung der in-plane-Magnetisierung gefunden. Dies zeigte, dass die Kopplung der Schichtmagnetisierungen nicht allein durch die Streufelder realisiert wurde, sondern ein weiterer Beitrag hinzukam, dessen Ursache mit hoher Wahrscheinlichkeit in den Zwischenschichtrauigkeiten zu finden war. Statische mikromagnetische Simulationen an quadratischen Co/Spalt/Py-Strukturelementen haben gezeigt, dass die in-plane-Magnetisierungsverteilung der Systeme mit C=parallel eine merklich verzerrte Landaustruktur aufwies. Zudem lag bei Konfigurationen mit P=antiparallel ein lateraler Shift bezüglich der Gleichgewichtspositionen der Kerne vor, was aufgrund der Interaktion der out-of-plane-Streufelder zu erwarten war. Dies spiegelte sich auch in der Energiebetrachtung wieder, wobei die beiden Systeme mit der Konfiguration C=parallel deutlich höhere Gesamtenergien aufwiesen als diejenigen mit C=antiparallel. Allgemein lagen im Falle von parallelen Kernpolarisationen die Energiewerte etwas niedriger als bei antiparallel ausgerichteten Kernen. Die dynamische Anregung der ferromagnetischen Schichtsysteme wurde experimentell mittels eines in-plane-Magnetfeldpulses realisiert, welcher durch die lineare Stripline generiert wurde. Die Pulsdauer betrug je nach Element 0,5 bis 1,6ns, und bezüglich der Pulsamplitude mussten Feldstärken von B(Puls)=3,1mT bis zu 6,0mT angelegt werden, um eine Gyrationsbewegung beobachten zu können.
  • Thumbnail Image
    ItemOpen Access
    Interaction of carbon and nitrogen in iron
    (Stuttgart : Max-Planck-Institut für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung), 2016) Göhring, Holger; Mittemeijer, Eric Jan (Prof. Dr. Ir.)
  • Thumbnail Image
    ItemOpen Access
    Grain growth and texture evolution in copper thin films
    (2010) Sonnweber-Ribic, Petra; Arzt, Eduard (Prof. Dr. phil)
    An improved basic understanding of mechanisms causing grain growth and texture evolution in Cu thin films contains the potential to improve performance and reliability of components and devices. In this work, the influence of film thickness, strain and temperature on grain growth and texture evolution in Cu thin films was investigated. By varying the parameters, information about the underlying mechanisms were revealed. The 0.5 to 10 micrometer thick Cu films were deposited on 125 micrometer thick polyimide substrates (Kapton®, DuPont) using a UHV magnetron sputtering system. For detailed observation of grain growth and texture evolution an EBSD-based in situ testing appliance was constructed. This system allowed the simultaneous observation of grain growth and texture evolution, giving new insight into growth kinetics and details of grain growth. In a first step, Cu thin films of thicknesses in between 0.5 and 10 micrometer were deposited on polymer substrates and annealed at 330°C for 30 min. Their resulting texture and microstructure were investigated by EBSD. A texture transition from (111) to (100) was observed at film thicknesses between 3 and 5 micrometer. The experimental findings were explained by the texture evolution model of Thompson and Carel. A significant observation which cannot be explained by a purely energetic argument is the broad texture transition. In order to get more information about the critical role of strain energy, uniaxial tensile tests were carried out on 3 micrometer thick films. In contrast to theoretical predictions, various tensile tests revealed no influence of strain on grain growth behaviour. Neither at room temperature nor at elevated temperatures, further (100) grain growth was observed. In a next step, the abnormal growth of individual (100) oriented grains was recorded for more than 24 hours at temperatures between 90 and 118°C. Annealing was carried out inside a Leo 1530-VP SEM equipped with a heating facility. Detailed analysis of grain growth and estimates of the possibly acting driving forces indicated that the reduction of dislocation density played an important role for abnormal grain growth. A further hint for the critical importance of defect density was given by the HWHM of the (100) texture fraction. Nevertheless, it was not clear why this driving force favours the growth of (100) oriented grains. A possible answer could be given by the strain energy release maximization (SERM) model developed by Lee. In addition, when analysing the activation energy for grain growth, they were found to possess a higher grain boundary mobility, supporting the preferred growth of (100) oriented grains. A new texture map, considering dislocation density as driving force, was constructed. Assuming dislocation density to play a significant role for grain growth and texture evolution in Cu thin films, the influence of deposition parameters is pointed out.
  • Thumbnail Image
    ItemOpen Access
    PFG-NMR studies of ATP diffusion in PEG-DA hydrogels and aqueous solutions of PEG-DA polymers
    (2018) Majer, Günter; Southan, Alexander
    Adenosine triphosphate (ATP) is the major carrier of chemical energy in cells. The diffusion of ATP in hydrogels, which have a structural resemblance to the natural extracellular matrix, is therefore of great importance to understand many biological processes. In continuation of our recent studies of ATP diffusion in poly(ethylene glycol) diacrylate (PEG-DA) hydrogels by pulsed field gradient nuclear magnetic resonance (PFG-NMR), we present precise diffusion measurements of ATP in aqueous solutions of PEG-DA polymers, which are not cross-linked to a three-dimensional network. The dependence of the ATP diffusion on the polymer volume fraction in the hydrogels, φ, was found to be consistent with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. The present measurements of ATP diffusion in aqueous solutions of the polymers revealed that the diffusion coefficient is determined by φ only, regardless of whether the polymers are cross-linked or not. These results seem to be inconsistent with the free volume model, according to which voids are formed by a statistical redistribution of surrounding molecules, which is expected to occur more frequently in the case of not cross-linked polymers. The present results indicate that ATP diffusion takes place only in the aqueous regions of the systems, with the volume fraction of the polymers, including a solvating water layer, being blocked for the ATP molecules. The solvating water layer increases the effective volume of the polymers by 66%. This modified obstruction model is most appropriate to correctly describe the ATP diffusion in PEG-DA hydrogels.
  • Thumbnail Image
    ItemOpen Access
    Deposition of metal oxide thin films from solutions containing organic additives
    (2007) Lipowsky, Peter; Aldinger, Fritz (Prof. Dr.)
    In bio-inspired materials synthesis the principles of biomineralization are employed for the fabri­cation of materials with favourable functional properties at near-ambient temperature and with little expenditure: Organic templates direct the formation of inorganic matter. In aqueous so­lu­tion, zinc compounds with manifold morphologies are produced by ther­mal hy­dro­ly­sis of zinc nitrate in the presence of biomolecules like amino acids and dipeptides. In methanol, ZnO films are deposited by hydro­lysis of zinc acetate in the presence of polymers like poly­vi­nyl­pyrro­li­done (PVP) and poly­ethylene glycol. With PVP, particularly smooth, uniform and stable films are fa­bri­cated. Their thickness is determined by the deposition time and the polymer concen­tration. Various microscopic and spec­tro­scopic mea­sure­ments prove that the films consist of textured na­no­cry­stal­line zinc oxide. Selected properties of the films, such as their photo­lumi­nescence, are in­ve­sti­gated. Film de­po­si­tion is possible on substrates with organic coatings bearing certain func­tio­nal groups. Pat­terned films can be de­po­si­ted after local de­com­po­si­tion of the or­ga­nic coating by UV light. The mecha­nism of film formation is treated in detail. Like in bio­mineralization, an amor­phous transient state of mat­ter occurs before crystallization. This state suc­cumbs to ZnO nano­crystals, which either aggregate in solution or adsorb to the substrate. It is de­mon­stra­ted in what way the additive controls the reaction. Sulfonate-mo­di­fied po­­ly­­sty­­rene beads are coa­ted with zinc oxide and used as sacrificial temp­lates for the fabrication of zinc oxide hollow spheres. La­mi­nates of alternating layers of zinc oxide and poly(amino acids) are deposited and ex­hibit an im­proved mechanical per­for­mance com­pared to the monolithic zinc oxide.
  • Thumbnail Image
    ItemOpen Access
    Novel X-ray lenses for direct and coherent imaging
    (2019) Sanli, Umut Tunca; Schütz, Gisela (Prof. Dr.)
  • Thumbnail Image
    ItemOpen Access
    Synthesis and characterization of carbon nanotube reinforced copper thin films
    (2006) Otto, Cornelia; Arzt, Eduard (Prof. Dr.)
    Two model composites of copper and carbon nanotubes were fabricated by very different deposition methods. Copper electrodeposition in a plating bath containing nanotubes created a 3D matrix of randomly oriented CNTs within a thick, 20 micron Cu film. In contrast, sandwiching a layer of well-separated nanotubes between two sub-micron sputtered Cu layers produced a 2D-composite with nanotubes lying parallel to the substrate surface. These composites, which were mechanically tested using various techniques, proved to be well suited to explore the nature of the CNT/Cu matrix interface. Columns approximately 600 nm in diameter and 1.4 microns high were cut from the sputter-deposited composite and microcompression tested in a nanoindenter. No influence of the presence of nanotubes on the stress-strain-curves was observed, which was attributed to the low nanotube content. On the other hand, microscopic analysis showed an influence of the nanotube on the copper immediately surrounding it, resulting in funnel-like depressions on the column surface. In addition to deformation by slip, twinning was observed in some columns, which has never before been reported in the literature for micron-sized columns. Macroscopic tensile tests were performed on the electrodeposited films and the samples with the highest carbon content showed an increase in toughness of over 100% with respect to the CNT-free control samples produced by the same method. Finally, short copper electrodepositions into carbon nanotube carpets revealed large regions with conformally coated nanotubes. Until now, it was assumed that copper would not wet the nanotubes and that the interfacial strength between copper and CNTs would be low, since copper does not form a carbide. However, these experiments all revealed clear evidence of adhesion exceeding the copper shear strength. To our knowledge, this is the first time such strong adhesion was demonstrated between a nanotube and a metal matrix. We attribute this unexpected, but highly desirable adhesion and wetting behaviour to the defect structure in the nanotubes used. Most of the experiments were done with nitrogen-doped carbon nanotubes, which are known to be rich in defects. The nanotube carpets used in the last experiment were not doped but had a high defect density due to the synthesis method used. As a good adhesion between fiber and matrix is a prerequisite for the successful use of carbon nanotubes in metal matrix composites, these results are very encouraging. The composites and methods presented here provide a foundation for further studies needed to understand the nanotube-metal interaction in more detail and thus ultimately for successful metal-carbon nanotube composites.
  • Thumbnail Image
    ItemOpen Access
    Microstructural changes and intermetallic compound formation in metallic bilayers
    (Stuttgart : Max-Planck-Institut für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung), 2016) Rossi, Paul J.; Mittemeijer, Eric Jan (Prof. Dr. Ir.)
    This thesis investigates interdiffusion and intermetallic compound (IMC) formation, as well as their effects on the microstructure, in metallic thin-film bilayers. The investigation focuses on bilayers based on the Ag-Sn and Ag-In binary systems, which are technologically important as basis for lead free solders. Due to the enhanced diffusional mechanisms in these systems, diffusion occurs readily even at room and low temperatures. The proceeding interdiffusion eventually leads to IMC formation in the bilayers, allowing for the investigation of the kinetics of IMC formation and the associated microstructural changes at room and low temperatures. The combination of the properties special to thin films with the diffusional mechanisms in the binary Ag-Sn and Ag-In systems leads to interesting effects, such as the dependence of IMC formation on the stacking sequence in the bilayers. The obtained experimental results for both systems could be explained using thermodynamic and kinetic models. Experimental characterization of the bilayers mainly relied on X-ray diffraction (XRD) and electron microscopy. In order to investigate the effect of the deposition process on IMC formation and the microstructure of the bilayers, different physical vapor deposition (PVD) techniques, especially thermal evaporation and magnetron sputtering, were used for the preparation of the bilayers. During investigation of the Ag-Sn system it was found that ambiguity exists among the published crystal structures of the Ag3Sn IMC. Therefore, the crystal structure of Ag3Sn has been reinvestigated using high-resolution XRD in connection with Rietveld refinements.
  • Thumbnail Image
    ItemOpen Access
    Chiral metamaterials
    (2016) Eslami, Sahand; Fischer, Peer (Prof. Dr.)
  • Thumbnail Image
    ItemOpen Access
    The strength limits of ultra-thin copper films
    (2007) Wiederhirn, Guillaume; Arzt, Eduard (Prof. Dr.)
    Elucidating size effects in ultra-thin films is essential to ensure the performance and reliability of MEMS and electronic devices. In this dissertation, the influence of a capping layer on the mechanical behavior of copper (Cu) films was analyzed. Passivation is expected to shut down surface diffusion and thus to alter the contributions of dislocation- and diffusion-based plasticity in thin films. Experiments were carried out on 25 nm to 2 µm thick Cu films magnetron-sputtered onto amorphous-silicon nitride coated silicon (111) substrates. These films were capped with 10 nm of aluminum oxide or silicon nitride passivation without breaking vacuum either directly after Cu deposition or after a 500 °C anneal. The evolution of thermal stresses in these films was investigated mainly by the substrate curvature method betweeen -160 °C and 500 °C. Negligible differences were detected for the silicon nitride vs. the aluminum oxide passivated Cu films. The processing parameters associated with the passivation deposition also had no noticeable effect on the stress-temperature behavior of the Cu. However, the thermomechanical behavior of passivated Cu films strongly depended on the Cu film thickness. For films in the micrometer range, the influence of the passivation layer was not significant, which suggests that the Cu deformed mainly by dislocation plasticity. However, diffusional creep plays an increasing role with decreasing film thickness since it becomes increasingly difficult to nucleate dislocations in smaller grains. Size effects were investigated by plotting the stress at room temperature after thermal cycling as a function of the inverse film thickness. Between 2 µm and 200 nm, the room temperature stress was inversely proportional to the film thickness. The passivation exerted a strong effect on Cu films thinner than 100 nm by effectively shutting down surface diffusion mechanisms. Since dislocation processes were also shut off in these ultra-thin films, they exhibited purely elastic behavior in the measured temperature range. Their lack of plasticity was confirmed by in-situ TEM analysis, which revealed the presence of sessile parallel glide dislocations during thermal cycling. The stress plateau reported for films thinner than 100 nm was attributed to the fact that the thermal strain applied was insufficient to induce yielding. The highest stress value of 1.7 GPa measured at -150 °C is therefore a lower limit for the actual flow stress since even at this high stress the films remained elastic.