Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Impact of remote mutations on metallo-beta-lactamase substrate specificity : implications for the evolution of antibiotic resistance
    (2005) Ölschläger, Peter; Mayo, Stephen L.; Pleiss, Jürgen
    Metallo-beta-lactamases have raised concerns due to their ability to hydrolyze a broad spectrum of beta-lactam antibiotics. The G262S point mutation distinguishing the metallo-beta-lactamase IMP 1 from IMP 6 has no effect on the hydrolysis of the drugs cephalothin and cefotaxime, but significantly improves catalytic efficiency toward cephaloridine, ceftazidime, benzylpenicillin, ampicillin, and imipenem. This change in specificity occurs even though residue 262 is remote from the active site. We investigated the substrate specificities of five other point mutants resulting from single nucleotide substitutions at positions near residue 262: G262A, G262V, S121G, F218Y and F218I. The results suggest two types of substrates: type I (nitrocefin, cephalothin and cefotaxime), which are converted equally well by IMP-6, IMP-1, and G262A, but even more efficiently by the other mutants, and type II (ceftazidime, benzylpenicillin, ampicillin, and imipenem), which are hydrolyzed much less efficiently by all the mutants, with IMP-1 being the most active. G262V, S121G, F218Y, and F218I improve conversion of type I substrates, whereas G262A and IMP-1 improve conversion of type II substrates, indicating two distinct evolutionary adaptations from IMP-6. Substrate structure may explain the catalytic efficiencies observed. Type I substrates have R2 electron donors, which may stabilize the substrate intermediate in the binding pocket and lead to enhanced activity. In contrast, the absence of these stabilizing interactions with type II substrates may result in poor conversion and increased sensitivity to mutations. This observation may assist future drug design. As the G262A and F218Y mutants confer effective resistance to Escherichia coli BL21(DE3) cells (high minimal inhibitory concentrations), they are likely to evolve naturally.
  • Thumbnail Image
    ItemOpen Access
    Activity of lipases and esterases towards tertiary alcohols : new insights into structure-function relationships
    (2002) Henke, Erik; Pleiss, Jürgen; Bornscheuer, Uwe Theo
    Hydrolytic enzymes are versatile biocatalysts and find increasing applications in organic synthesis and a considerable number of industrial processes using these enzymes have been commercialized. Within this class, lipases (E.C. 3.1.1.3) and carboxyl esterases (E.C. 3.1.1.1) are frequently used as they accept a broad range of non-natural substrates, are usually very stable in organic solvents and exhibit good to excellent stereoselectivity.
  • Thumbnail Image
    ItemOpen Access
    Structure and dynamics of Candida rugosa lipase : the role of organic solvent
    (2004) Tejo, Bimo Ario; Abu Bakar Salleh; Pleiss, Jürgen
    The effect of organic solvent to structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (Cα rms deviation 1-1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85-Asp284, Lys75-Asp79) and a stable hydrogen bond (Lys75-Asn 292) in organic solvent. Thus organic solvents stabilize the lid but render the side chains in the hydrophobic substrate binding site more mobile.
  • Thumbnail Image
    ItemOpen Access
    Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity
    (2002) Schmitt, Jutta; Brocca, Stefania; Schmid, Rolf D.; Pleiss, Jürgen
    The molecular basis of chain length specificity of Candida rugosa lipase 1 was investigated by molecular modelling and site-directed mutagenesis. The synthetic lip1 gene and the lipase mutants were expressed in Pichia pastoris and assayed for their chain length specificity in single substrate assays using triglycerides as well as in a competitive substrate assay using a randomized oil. Mutation of amino acids at different locations inside the tunnel (P246F, L413F, L410W, L410F/S300E, L410F/S365L) resulted in mutants with a different chain length specificity. Mutants P246F and L413F have a strong preference for short chain lengths whereas substrates longer than C10 are hardly hydrolyzed. Increasing the bulkiness of the amino acid at position 410 led to mutants that show a strong discrimination of chain lengths longer than C14. The results obtained can be explained by a simple mechanical model: the activity for a fatty acid sharply decreases as it becomes long enough to reach the mutated site. In contrast, a mutation at the entrance of the tunnel (L304F) has a strong impact on C4 and C6 substrates. This mutant is nevertheless capable to hydrolyze chain lengths longer than C8.
  • Thumbnail Image
    ItemOpen Access
    The molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases
    (2003) Henke, Erik; Bornscheuer, Uwe Theo; Schmid, Rolf D.; Pleiss, Jürgen
    Carboxylesterases containing the sequence motif GGGX catalyze hydrolysis of esters of chiral tertiary alcohols, albeit at only low to moderate enantioselectivity towards three model substrates (linalyl acetate, methyl-1-pentin-1-yl acetate, 2-phenyl-3-butin-2-yl acetate). In order to understand the molecular mechanism of enantiorecognition and to improve enantioselectivity towards this interesting substrate class, the interaction of both enantiomers with the substrate binding sites of acetylcholinesterases and p-nitrobenzyl esterase from Bacillus subtilis was modeled and correlated to experimental enantioselectivity. For all substrate-enzyme pairs, enantiopreference and ranking by enantioselectivity could be predicted by the model. In p-nitrobenzyl esterase, one of the key residues in determining enantioselectivity was G105: exchange of this residue by alanine led to a six-fold increase of enantioselectivity (E=19) towards 2-phenyl-3-butin-2-yl acetate. However, the effect of this mutation is personalized: towards the substrate linalyl acetate, the same mutant had a reversed enantiopreference. Thus, depending on the substrate structure, the same mutant had either increased enantioselectivity or opposite enantiopreference compared to wild type enzyme.
  • Thumbnail Image
    ItemOpen Access
    Molecular modelling of family GH16 glycoside hydrolases : potential roles for xyloglucan endotransglucosylases/hydrolases in cell wall modification in the Poaceae
    (2004) Strohmeier, Marco; Hrmova, Maria; Fischer, Markus; Harvey, Andrew J.; Pleiss, Jürgen; Fincher, Geoffrey B.
    Family GH16 glycoside hydrolases can be assigned to five sub-groups according to their substrate specificities, including xyloglucan endotransglucosylases/hydrolases (XTHs), (1,3)-β- galactanases, (1,4)-β-galactanases/κ-carrageenases, “non-specific” (1,3/1,3;1,4)-β-D-glucan endohydrolases and (1,3;1,4)-β-D-glucan endohydrolases. A structured family GH16 glycoside hydrolase database has been constructed (http://www.ghdb.uni-stuttgart.de) and provides multiple sequence alignments with functionally annotated amino acid residues and phylogenetic trees. The database has been used for homology modelling of seven family GH16 glycoside hydrolases, based on structural coordinates for (1,3;1,4)-β-D-glucan endohydrolases and a κ-carrageenase. In combination with multiple sequence alignments, the models predict the three-dimensional dispositions of amino acid residues in the substrate-binding and catalytic sites of XTHs and (1,3/1,3;1,4)-β-D-glucan endohydrolases, for which no structural information is available. Furthermore, they reveal similarities with the active sites of family GH11 (1,4)-β-D-xylan endohydrolases. From a biological viewpoint, the classification and molecular modelling establish structural and evolutionary connections between XTHs, (1,3;1,4)-β-D-glucan endohydrolases and xylan endohydrolases, and raise the possibility that XTHs from higher plants could be active not only on cell wall xyloglucans, but also on (1,3;1,4)-β-D-glucans and arabinoxylans, which are major components of walls in grasses. A role for XTHs in (1,3;1,4)-β-D-glucan and arabinoxylan modification would be consistent with the apparent over-representation of XTH sequences in cereal EST databases.