Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
2 results
Search Results
Item Open Access Precision 3D‐printed cell scaffolds mimicking native tissue composition and mechanics(2020) Erben, Amelie; Hörning, Marcel; Hartmann, Bastian; Becke, Tanja; Eisler, Stephan A.; Southan, Alexander; Cranz, Séverine; Hayden, Oliver; Kneidinger, Nikolaus; Königshoff, Melanie; Lindner, Michael; Tovar, Günter E. M.; Burgstaller, Gerald; Clausen‐Schaumann, Hauke; Sudhop, Stefanie; Heymann, MichaelCellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell‐ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell‐ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two‐photon stereolithography is adopted to print up to mm‐sized high‐precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein‐based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two‐pass printing or post‐print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7‐300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D‐lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single‐cell and tissue dynamics in response to defined mechanical and bio‐molecular cues and is ultimately scalable to full organs.Item Open Access Impact of repetitive, ultra-short soft X-ray pulses from processing of steel with ultrafast lasers on human cell cultures(2024) Holland, Julian; Lungu, Cristiana; Weber, Rudolf; Emperle, Max; Graf, ThomasUltrafast lasers, with pulse durations below a few picoseconds, are of significant interest to the industry, offering a cutting-edge approach to enhancing manufacturing processes and enabling the fabrication of intricate components with unparalleled accuracy. When processing metals at irradiances exceeding the evaporation threshold of about 10 10 W/cm² these processes can generate ultra-short, soft X-ray pulses with photon energies above 5 keV. This has prompted extensive discussions and regulatory measures on radiation safety. However, the impact of these ultra-short X-ray pulses on molecular pathways in the context of living cells, has not been investigated so far. This paper presents the first molecular characterization of epithelial cell responses to ultra-short soft X-ray pulses, generated during processing of steel with an ultrafast laser. The laser provided pulses of 6.7 ps with a pulse repetition rate of 300 kHz and an average power of 500 W. The irradiance was 1.95 ×10 13 W/cm 2 . Ambient exposure of vitro human cell cultures, followed by imaging of the DNA damage response and fitting of the data to a calibrated model for the absorbed dose, revealed a linear increase in the DNA damage response relative to the exposure dose. This is in line with findings from work using continuous wave soft X-ray sources and suggests that the ultra-short X-ray pulses do not generate additional hazard. This research contributes valuable insights into the biological effects of ultrafast laser processes and their potential implications for user safety.