Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Generation of terahertz radiation via the transverse thermoelectric effect
    (2023) Yordanov, Petar; Priessnitz, Tim; Kim, Min‐Jae; Cristiani, Georg; Logvenov, Gennady; Keimer, Bernhard; Kaiser, Stefan
    Terahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect. In thin films grown on off‐cut substrates, femtosecond laser pulses generate ultrafast out‐of‐plane temperature gradients, which in turn launch in‐plane thermoelectric currents, thus allowing efficient emission of the resulting THz field out of the film structure. This scheme is demonstrated in experiments on thin films of the layered metals PdCoO2 and La1.84Sr0.16CuO4, and model calculations that elucidate the influence of the material parameters on the intensity and spectral characteristics of the emitted THz field are presented. Due to its simplicity, the method opens up a promising avenue for the development of highly versatile THz sources and integrable emitter elements.
  • Thumbnail Image
    ItemOpen Access
    Ultraviolet photodetectors and readout based on a‐IGZO semiconductor technology
    (2023) Schellander, Yannick; Winter, Marius; Schamber, Maurice; Munkes, Fabian; Schalberger, Patrick; Kuebler, Harald; Pfau, Tilman; Fruehauf, Norbert
    In this work, real-time ultraviolet photodetectors are realized through metal–semiconductor–metal (MSM) structures. Amorphous indium gallium zinc oxide (a-IGZO) is used as semiconductor material and gold as metal electrodes. The readout of an individual sensor is implemented by a transimpedance amplifier (TIA) consisting of an all-enhancement a-IGZO thin-film transistor (TFT) operational amplifier and a switched capacitor (SC) as feedback resistance. The photosensor and the transimpedance amplifier are both manufactured on glass substrates. The measured photosensor possesses a high responsivity R, a low response time tRES, and a good noise equivalent power value NEP.
  • Thumbnail Image
    ItemOpen Access
    Image preprocessing for outdoor luminescence inspection of large photovoltaic parks
    (2021) Kölblin, Pascal; Bartler, Alexander; Füller, Marvin
    Electroluminescence (EL) measurements allow one to detect damages and/or defective parts in photovoltaic systems. In principle, it seems possible to predict the complete current/voltage curve from such pictures even automatically. However, such a precise analysis requires image corrections and calibrations, because vignetting and lens distortion cause signal and spatial distortions. Earlier works on crystalline silicon modules used the cell gap joints (CGJ) as calibration pattern. Unfortunately, this procedure fails if the detection of the gaps is not accurate or if the contrast in the images is low. Here, we enhance the automated camera calibration algorithm with a reliable pattern detection and analyze quantitatively the quality of the process. Our method uses an iterative Hough transform to detect line structures and uses three key figures (KF) to separate detected busbars from cell gaps. This method allows a reliable identification of all cell gaps, even in noisy images or if disconnected edges in PV cells exist or potential induced degradation leads to a low contrast between active cell area and background. In our dataset, a subset of 30 EL images (72 cell each) forming grid (5×11) lead to consistent calibration results. We apply the calibration process to 997 single module EL images of PV modules and evaluate our results with a random subset of 40 images. After lens distortion correction and perspective correction, we analyze the residual deviation between ideal target grid points and the previously detected CGJ after applied distortion and perspective correction. For all of the 2200 control points in the 40 evaluation images, we achieve a deviation of less than or equal to 3 pixels. For 50% of the control points, a deviation of of less than or equal to 1 pixel is reached.
  • Thumbnail Image
    ItemOpen Access
    Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices
    (2015) Sanatinia, Reza; Berrier, Audrey; Dhaka, Veer; Perros, Alexander P.; Huhtio, Teppo; Lipsanen, Harri; Anand, Srinivasan
    A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, ‘black InP,’ a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved.
  • Thumbnail Image
    ItemOpen Access
    Electro-active metaobjective from metalenses-on-demand
    (2022) Karst, Julian; Lee, Yohan; Floess, Moritz; Ubl, Monika; Ludwigs, Sabine; Hentschel, Mario; Giessen, Harald
    Switchable metasurfaces can actively control the functionality of integrated metadevices with high efficiency and on ultra-small length scales. Such metadevices include active lenses, dynamic diffractive optical elements, or switchable holograms. Especially, for applications in emerging technologies such as AR (augmented reality) and VR (virtual reality) devices, sophisticated metaoptics with unique functionalities are crucially important. In particular, metaoptics which can be switched electrically on or off will allow to change the routing, focusing, or functionality in general of miniaturized optical components on demand. Here, we demonstrate metalenses-on-demand made from metallic polymer plasmonic nanoantennas which are electrically switchable at CMOS (complementary metal-oxide-semiconductor) compatible voltages of ±1 V. The nanoantennas exhibit plasmonic resonances which can be reversibly switched ON and OFF via the applied voltage, utilizing the optical metal-to-insulator transition of the metallic polymer. Ultimately, we realize an electro-active non-volatile multi-functional metaobjective composed of two metalenses, whose unique optical states can be set on demand. Overall, our work opens up the possibility for a new level of electro-optical elements for ultra-compact photonic integration.
  • Thumbnail Image
    ItemOpen Access
    Mitigating the amorphization of perovskite layers by using atomic layer deposition of alumina
    (2025) Kedia, Mayank; Das, Chittaranjan; Kot, Malgorzata; Yalcinkaya, Yenal; Zuo, Weiwei; Tabah Tanko, Kenedy; Matvija, Peter; Ezquer, Mikel; Cornago, Iñaki; Hempel, Wolfram; Kauffmann, Florian; Plate, Paul; Lira-Cantu, Monica; Weber, Stefan A. L.; Saliba, Michael
    Atomic layer deposition of aluminum oxide (ALD-Al2O3) layers has recently been studied for stabilizing perovskite solar cells (PSCs) against environmental stressors, such as humidity and oxygen. In addition, the ALD-Al2O3 layer acts as a protective barrier, mitigating pernicious halide ion migration from the perovskite towards the hole transport interface. However, its effectiveness in preventing the infiltration of ions and additives from the hole-transport layer into perovskites remains insufficiently understood. Herein, we demonstrate the deposition of a compact ultrathin (∼0.75 nm) ALD-Al2O3 layer that conformally coats the morphology of a triple-cation perovskite layer. This promotes an effective contact of the hole transporter layer on top of the perovskite, thereby improving the charge carrier collection between these two layers. Upon systematically investigating the layer-by-layer structure of the PSC, we discovered that ALD-Al2O3 also acts as a diffusion barrier for the degraded species from the adjacent transport layer into the perovskite. In addition to these protective considerations, ALD-Al2O3 impedes the transition of crystalline perovskites to an undesired amorphous phase. Consequently, the dual functionality (i.e., enhanced contact and diffusion barrier) of the ALD-Al2O3 protection enhanced the device performance from 19.1% to 20.5%, while retaining 98% of its initial performance compared to <10% for pristine devices after 1500 h of outdoor testing under ambient conditions. Finally, this study deepens our understanding of the mechanism of ALD-Al2O3 as a two-way diffusion barrier, highlighting the multifaceted role of buffer layers in interfacial engineering for the long-term stability of PSCs.