Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
11 results
Search Results
Item Open Access Reconstruction of μXRCT data sets using the ASTRA toolbox(2020) Voland, PaulItem Open Access Ordinal patterns in clusters of subsequent extremes of regularly varying time series(2020) Oesting, Marco; Schnurr, AlexanderIn this paper, we investigate temporal clusters of extremes defined as subsequent exceedances of high thresholds in a stationary time series. Two meaningful features of these clusters are the probability distribution of the cluster size and the ordinal patterns giving the relative positions of the data points within a cluster. Since these patterns take only the ordinal structure of consecutive data points into account, the method is robust under monotone transformations and measurement errors. We verify the existence of the corresponding limit distributions in the framework of regularly varying time series, develop non-parametric estimators and show their asymptotic normality under appropriate mixing conditions. The performance of the estimators is demonstrated in a simulated example and a real data application to discharge data of the river Rhine.Item Open Access Identification of linear time-invariant systems with dynamic mode decomposition(2022) Heiland, Jan; Unger, BenjaminDynamic mode decomposition (DMD) is a popular data-driven framework to extract linear dynamics from complex high-dimensional systems. In this work, we study the system identification properties of DMD. We first show that DMD is invariant under linear transformations in the image of the data matrix. If, in addition, the data are constructed from a linear time-invariant system, then we prove that DMD can recover the original dynamics under mild conditions. If the linear dynamics are discretized with the Runge–Kutta method, then we further classify the error of the DMD approximation and detail that for one-stage Runge–Kutta methods; even the continuous dynamics can be recovered with DMD. A numerical example illustrates the theoretical findings.Item Open Access Multivariate motion patterns and applications to rainfall radar data(2023) Fischer, Svenja; Oesting, Marco; Schnurr, AlexanderThe classification of movement in space is one of the key tasks in environmental science. Various geospatial data such as rainfall or other weather data, data on animal movement or landslide data require a quantitative analysis of the probable movement in space to obtain information on potential risks, ecological developments or changes in future. Usually, machine-learning tools are applied for this task, as these approaches are able to classify large amounts of data. Yet, machine-learning approaches also have some drawbacks, e.g. the often required large training sets and the fact that the algorithms are often hard to interpret. We propose a classification approach for spatial data based on ordinal patterns. Ordinal patterns have the advantage that they are easily applicable, even to small data sets, are robust in the presence of certain changes in the time series and deliver interpretative results. They therefore do not only offer an alternative to machine-learning in the case of small data sets but might also be used in pre-processing for a meaningful feature selection. In this work, we introduce the basic concept of multivariate ordinal patterns and the corresponding limit theorem. A simulation study based on bootstrap demonstrates the validity of the results. The approach is then applied to two real-life data sets, namely rainfall radar data and the movement of a leopard. Both applications emphasize the meaningfulness of the approach. Clearly, certain patterns related to the atmosphere and environment occur significantly often, indicating a strong dependence of the movement on the environment.Item Open Access Implications of modeling seasonal differences in the extremal dependence of rainfall maxima(2022) Jurado, Oscar E.; Oesting, Marco; Rust, Henning W.For modeling extreme rainfall, the widely used Brown-Resnick max-stable model extends the concept of the variogram to suit block maxima, allowing the explicit modeling of the extremal dependence shown by the spatial data. This extremal dependence stems from the geometrical characteristics of the observed rainfall, which is associated with different meteorological processes and is usually considered to be constant when designing the model for a study. However, depending on the region, this dependence can change throughout the year, as the prevailing meteorological conditions that drive the rainfall generation process change with the season. Therefore, this study analyzes the impact of the seasonal change in extremal dependence for the modeling of annual block maxima in the Berlin-Brandenburg region. For this study, two seasons were considered as proxies for different dominant meteorological conditions: summer for convective rainfall and winter for frontal/stratiform rainfall. Using maxima from both seasons, we compared the skill of a linear model with spatial covariates (that assumed spatial independence) with the skill of a Brown-Resnick max-stable model. This comparison showed a considerable difference between seasons, with the isotropic Brown-Resnick model showing considerable loss of skill for the winter maxima. We conclude that the assumptions commonly made when using the Brown-Resnick model are appropriate for modeling summer (i.e., convective) events, but further work should be done for modeling other types of precipitation regimes.Item Open Access FFT-based homogenization at finite strains using composite boxels (ComBo)(2022) Keshav, Sanath; Fritzen, Felix; Kabel, MatthiasComputational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging applications. Often the simulations are based on experimental and synthetic material microstructures represented by high-resolution 3D image data. The computational complexity of simulations operating on such voxel data is distinct. The inability of voxelized 3D geometries to capture smooth material interfaces accurately, along with the necessity for complexity reduction, has motivated a special local coarse-graining technique called composite voxels (Kabel et al. Comput Methods Appl Mech Eng 294: 168-188, 2015). They condense multiple fine-scale voxels into a single voxel, whose constitutive model is derived from the laminate theory. Our contribution generalizes composite voxels towards composite boxels (ComBo) that are non-equiaxed, a feature that can pay off for materials with a preferred direction such as pseudo-uni-directional fiber composites. A novel image-based normal detection algorithm is devised which (i) allows for boxels in the firsts place and (ii) reduces the error in the phase-averaged stresses by around 30% against the orientation cf. Kabel et al. (Comput Methods Appl Mech Eng 294: 168-188, 2015) even for equiaxed voxels. Further, the use of ComBo for finite strain simulations is studied in detail. An efficient and robust implementation is proposed, featuring an essential selective back-projection algorithm preventing physically inadmissible states. Various examples show the efficiency of ComBo against the original proposal by Kabel et al. (Comput Methods Appl Mech Eng 294: 168-188, 2015) and the proposed algorithmic enhancements for nonlinear mechanical problems. The general usability is emphasized by examining various Fast Fourier Transform (FFT) based solvers, including a detailed description of the Doubly-Fine Material Grid (DFMG) for finite strains. All of the studied schemes benefit from the ComBo discretization.Item Open Access Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules(2022) Zinßer, Mario; Braun, Benedikt; Helder, Tim; Magorian Friedlmeier, Theresa; Pieters, Bart; Heinlein, Alexander; Denk, Martin; Göddeke, Dominik; Powalla, MichaelWe show that the concept of topology optimization for metallization grid patterns of thin-film solar devices can be applied to monolithically integrated solar cells. Different irradiation intensities favor different topological grid designs as well as a different thickness of the transparent conductive oxide (TCO) layer. For standard laboratory efficiency determination, an irradiation power of 1000W/m2is generally applied. However, this power rarely occurs for real-world solar modules operating at mid-latitude locations. Therefore, contact layer thicknesses and also lateral grid patterns should be optimized for lower irradiation intensities. This results in material production savings for the grid and TCO layer of up to 50 % and simultaneously a significant gain in yield of over 1%for regions with a low annual mean irradiation.Item Open Access Simulating stochastic processes with variational quantum circuits(2022) Fink, DanielSimulating future outcomes based on past observations is a key task in predictive modeling and has found application in many areas ranging from neuroscience to the modeling of financial markets. The classical provably optimal models for stationary stochastic processes are so-called ϵ-machines, which have the structure of a unifilar hidden Markov model and offer a minimal set of internal states. However, these models are not optimal in the quantum setting, i.e., when the models have access to quantum devices. The methods proposed so far for quantum predictive models rely either on the knowledge of an ϵ-machine, or on learning a classical representation thereof, which is memory inefficient since it requires exponentially many resources in the Markov order. Meanwhile, variational quantum algorithms (VQAs) are a promising approach for using near-term quantum devices to tackle problems arising from many different areas in science and technology. Within this work, we propose a VQA for learning quantum predictive models directly from data on a quantum computer. The learning algorithm is inspired by recent developments in the area of implicit generative modeling, where a kernel-based two-sample-test, called maximum mean discrepancy (MMD), is used as a cost function. A major challenge of learning predictive models is to ensure that arbitrarily many time steps can be simulated accurately. For this purpose, we propose a quantum post-processing step that yields a regularization term for the cost function and penalizes models with a large set of internal states. As a proof of concept, we apply the algorithm to a stationary stochastic process and show that the regularization leads to a small set of internal states and a constantly good simulation performance over multiple future time steps, measured in the Kullback-Leibler divergence and the total variation distance.Item Open Access Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient(2022) Merkle, Robin; Barth, AndreaGeneral elliptic equations with spatially discontinuous diffusion coefficients may be used as a simplified model for subsurface flow in heterogeneous or fractured porous media. In such a model, data sparsity and measurement errors are often taken into account by a randomization of the diffusion coefficient of the elliptic equation which reveals the necessity of the construction of flexible, spatially discontinuous random fields. Subordinated Gaussian random fields are random functions on higher dimensional parameter domains with discontinuous sample paths and great distributional flexibility. In the present work, we consider a random elliptic partial differential equation (PDE) where the discontinuous subordinated Gaussian random fields occur in the diffusion coefficient. Problem specific multilevel Monte Carlo (MLMC) Finite Element methods are constructed to approximate the mean of the solution to the random elliptic PDE. We prove a-priori convergence of a standard MLMC estimator and a modified MLMC-control variate estimator and validate our results in various numerical examples.Item Open Access Semi-explicit integration of second order for weakly coupled poroelasticity(2024) Altmann, R.; Maier, R.; Unger, B.We introduce a semi-explicit time-stepping scheme of second order for linear poroelasticity satisfying a weak coupling condition. Here, semi-explicit means that the system, which needs to be solved in each step, decouples and hence improves the computational efficiency. The construction and the convergence proof are based on the connection to a differential equation with two time delays, namely one and two times the step size. Numerical experiments confirm the theoretical results and indicate the applicability to higher-order schemes.