Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
85 results
Search Results
Item Open Access A model-based framework for the assessment of energy-efficiency and CO2-mitigation measures in multi-cylinder paper drying(Stuttgart : Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung, 2022) Godin, Hélène; Radgen, Peter (Prof. Dr.-Ing.)Thesis on the effect of energy-efficiency and CO2-mitigation measures in multi-cylinder paper drying.Item Open Access Operational impacts of large-scale wind power generation in the German power system and effects of integration measures : analyses with a stochastic electricity market model(2012) Hasche, Bernhard; Voß, Alfred (Prof.)A strong increase of onshore and offshore wind power capacities is an official political target in Germany and other countries. The wind energy shares therefore rise in many power systems. Wind power generation has other characteristics than the power generation by conventional power plants. The wind is a natural resource that is fluctuating. The meteorological dependency leads to a limited predictability of the available power. A third aspect is the concentration of wind farms at locations with high wind yields as in the North of Germany. From a methodological point of view, the thesis focuses on the analysis of the three aspects with regard to the power system operation and the development of related modelling approaches. This especially refers to the application of a stochastic optimization model for the system analysis and to the simulation of wind power generation and wind power forecasts. The application orientated focus is on a scenario analysis of the German power system in 2020. The analysis aims at the identification of promising system adaptations that lead to an improved wind power integration and a more efficient power system operation. Before the model presentation, the importance of the three aspects above is discussed giving the basics for the latter modelling. It is shown that the residual load fluctuations are increased by the wind power generation, especially if they are related to the residual load levels. The flexibility of thermal power plants is also regarded here. An analysis of operational uncertainties shows the importance of wind power forecast errors in relation to load forecast errors. The DC load flow model and characteristics of the transmission grid are explained. A stochastic market model is presented that allows an integrative analysis of the wind power integration. One characteristic of the optimization model is the application of a rolling planning so that forecast errors can be specifically considered. A main modification of the model compared to earlier model versions is given by the representation of grid constraints. A grid reduction approach is developed that reduces the transmission grid to a simplified structure that is applied in the market model. The grid reduction approach is based on a comparison of DC load flow solutions in the reduced and unreduced grid. Additionally, an approach for the calculation of tertiary reserves is given. The approach considers the wind forecast quality and combines probabilistic elements with an optimization. The simulation of wind power generation and forecasts combines different analyses and methods. General quantitative relations between the variability of wind power generation and the geographical region size are derived. The equations are applied in the simulation of wind power generation that is based on adapted wind power curves. The adapted power curves consider regional smoothing effects in the transformation of wind speed to wind power. The simulation results reflect the high variability of the concentrated offshore wind power. For the simulation of the wind power forecasts, a scenario generation method based on moment matching is presented that allows simulating non Gaussian distributed forecast errors and their correlations. The results of a statistical analysis of measured forecast errors are used in the simulation. An empirical relation between error correlation and geographical distance is for example given. The German forecast quality that is simulated for 2020 assuming an improvement of forecasting by 20% is, related to the installed capacity, similar to the one of today due to the high spatial concentration of the offshore capacities. For the scenario analysis of the power system in 2020, the power plant portfolios of twelve German regions and other parameters are derived based on different sources. This includes reserve requirement values and reduced grid parameters that are calculated by the methods mentioned above. The results show that, in the regarded scenario, 3% of the yearly wind energy cannot be integrated into the system. They are curtailed nearly exclusively due to transmission constraints. The network congestions also lead to high differences between the regional electricity prices. The yearly costs of wind forecast errors amount to circa 180 million Euros or 1% of the operational system costs. The model results thereby indicate a large cost saving potential by risk management methods. Based on scenario modifications, integration measures related to CAES capacities, demand side management and more flexible power plants as well as infrastructural changes by grid expansions and an adapted geographical allocation of power plants are analysed. The importance of a stochastic modelling approach for the evaluation of flexibility related scenarios is shown. The comparison of the integration measures identifies infrastructural changes as most efficient system improvements whereas the benefits of CAES capacities are small. Assuming a grid without any transmission constraints, the yearly system costs are reduced by one billion Euros. A limited grid upgrade leads to 10% of this cost reduction. Similar cost savings are achieved by adapting the geographical locations of the power plants. Adjusting the generation to the grid is therefore a promising alternative to grid expansions especially considering the long processes that are involved with new transmission lines. A market design with regional electricity prices would give related incentives.Item Open Access Steam-oxygen fluidized bed gasification of sewage sludge(2023) Schmid, Max; Scheffknecht, Günter (Univ.-Prof. Dr. techn.)Sewage sludge is a residue that is generated unavoidably by the population. On a first sight, sewage sludge may be a hazardous waste that requires safe disposal. By looking closer, it is recognized as secondary resource. The mineral fraction contains valuable elements such as phosphorous, which can be retrieved as secondary raw material. This thesis focuses on the organic fraction, which is a renewable fuel and carbon source and can be used to substitute fossil carbon in fuels and chemicals. The first step in converting sewage sludge to renewable goods is syngas production via gasification. The experimental work of this thesis demonstrated the feasibility of synthesis gas production from sewage sludge by steam-oxygen fluidized bed gasification. It was shown that the process works reliably in the investigated 20 kW scale and that the syngas contains high H2 and CO concentrations and is thus suitable for synthesis of fuels and chemicals. The impurities NH3, H2S, COS and tar species, including heterocyclic species such as pyridine, were measured in considerable concentrations in the syngas. Small amounts of limestone bed additive enabled cracking of heavy tars and partial capture of H2S and COS. It was further found that the cold gas efficiency increases with rising gasification temperature due to improved tar and char conversion at higher temperatures. The typical operation temperature 850 °C requires an oxygen ratio of 0.33, obtaining a cold gas efficiency of 63 %. Moreover, the H2/CO-ratio could be controlled efficiently by altering the steam to carbon ratio, as steam promotes the water gas shift reaction in the gasifier to achieve the desired stoichiometry for synthesis, however, resulting in higher energy demand for steam provision. The experimental results can be utilized for process design, e.g., for a TRL 7-demonstrator. Furthermore, a gasifier model was developed and an integrated process chain was simulated to assess the conversion of sewage sludge to synthetic natural gas (SNG) with and without inclusion of power-to-gas through electrolysis. The total efficiency of the conversion including own consumption for the case without electrolysis was 51 % with a carbon utilization of 33 %. These values could be enhanced by inclusion of power-to-gas. It was predicted that the produced SNG has a CH4-concentration of between 0.81 m3 m 3 and 0.84 m3 m 3 and nitrogen concentrations of up to 0.16 m3 m 3 originating from fuel-bound nitrogen. The simulations on process integration showed that up to 20% of the sewage sludge feed can be dried by heat integration. This implies that also external heat sources have to be used for drying. Overall, the steam-oxygen gasification proved to be an efficient and technically feasible process for sewage sludge treatment and can be considered as an alternative to fluidized bed incineration for future mono-treatment plants.Item Open Access Large-scale high head pico hydropower potential assessment(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2018) Schröder, Hans Christoph; Wieprecht, Silke (Prof. Dr.-Ing.)Due to a lack of site-related information, Pico hydropower (PHP) has hardly been a projectable resource so far. This is particularly true for large area PHP potential information that could open a perspective to increase the size of development projects by aggregating individual PHP installations. The present work is extending the capabilities of GIS based hydropower potential assessment into the PHP domain through a GIS based PHP potential assessment procedure that facilitates the discrimination of areas without high head PHP potential against areas with PHP potential and against areas with so called “favorable PHP potential”. The basic unit of the spatial output is determined by the underlying PHP potential definition of this work: a standardized PHP installation and the required hydraulic source, together called standard unit, are located on an area of one square kilometer. The gradation of the output is a consequence of the verification techniques. Several large area PHP potential field assessment methods, based on contemplative analysis techniques, are developed in this work. Field assessments were conducted in Yunnan Province/China, Costa Rica, Ecuador and Sri Lanka. The aim for all field assessments is to get a comprehensive view on the PHP potential distribution of the entire country/province. Application of the GIS based PHP potential assessment procedure is aimed at the global tropical and subtropical regions.Item Open Access Analyse der Einsatzpotenziale von Wärmeerzeugungstechniken in industriellen Anwendungen(Stuttgart : Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung, 2016) Ohl, Michael; Voß, Alfred (Prof. Dr.-Ing.)Item Open Access Porosity and permeability alterations in processes of biomineralization in porous media - microfluidic investigations and their interpretation(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2022) Weinhardt, Felix; Class, Holger (apl. Prof. Dr.-Ing)Motivation: Biomineralization refers to microbially induced processes resulting in mineral formations. In addition to complex biomineral structures frequently formed by marine organisms, like corals or mussels, microbial activities may also indirectly induce mineralization. A famous example is the formation of stromatolites, which result from biofilm activities that locally alter the chemical and physical properties of the environment in favor of carbonate precipitation. Recently, biomineralization gained attention as an engineering application. Especially with the background of global warming and the objective to reduce CO2 emissions, biomineralization offers an innovative and sustainable alternative to the usage of conventional Portland cement, whose production currently contributes significantly to global CO2 emissions. The most widely used method of biomineralization in engineering applications, is ureolytic calcium carbonate precipitation, which relies on the hydrolysis of urea and the subsequent precipitation of calcium carbonate. The hydrolysis of urea at moderate temperatures is relatively slow and therefore needs to be catalyzed by the enzyme urease to be practical for applications. Urease can be extracted from plants, for example from ground jack beans, and the process is consequently referred to as enzyme-induced calcium carbonate precipitation (ECIP). Another method is microbially induced calcium carbonate precipitation (MICP), which uses ureolytic bacteria that produce the enzyme in situ. EICP and MICP applications allow for producing various construction materials, stabilizing soils, or creating hydraulic barriers in the subsurface. The latter can be used, for example, to remediate leakages at the top layer of gas storage reservoirs, or to contain contaminant plumes in aquifers. Especially when remediating leakages in the subsurface, the most crucial parameter to be controlled is its intrinsic permeability. A valuable tool for predicting and planning field applications is the use of numerical simulation at the scale of representative elementary volumes (REV). For that, the considered domain is subdivided into several REV’s, which do not resolve the pore space in detail, but represent it by averaged parameters, such as the porosity and permeability. The porosity describes the ratio of the pore space to the considered bulk volume, and the permeability quantifies the ease of fluid flow through a porous medium. A change in porosity generally also affects permeability. Therefore, for REV-scale simulations, constitutive relationships are utilized to describe permeability as a function of porosity. There are several porosity-permeability relationships in the literature, such as the Kozeny-Carman relationship, Verma-Pruess, or simple power-law relationships. These constitutive relationships can describe individual states but usually do not include the underlying processes. Different boundary conditions during biomineralization may influence the course of porosity-permeability relationships. However, these relationships have not yet been adequately addressed. Pore-scale simulations are, in principle, very well suited to investigate pore space changes and their effects on permeability systematically. However, these simulations also rely on simplifications and assumptions. Therefore, it is essential to conduct experimental studies to investigate the complex processes during calcium carbonate precipitation in detail at the pore scale. Recent studies have shown that microfluidic methods are particularly suitable for this purpose. However, previous microfluidic studies have not explicitly addressed the impact of biomineralization on hydraulic effects. Therefore, this work aims to identify relevant phenomena at the pore scale to conclude on the REV-scale parameters, porosity and permeability, and their relationship. Contributions: This work comprises three publications. First, a suitable microfluidic setup and workflow were developed in Weinhardt et al. [2021a] to study pore space changes and the associated hydraulic effects reliably. This paper illustrated the benefits and insights of combining optical microscopy and micro X-ray computed tomography (micro XRCT) with hydraulic measurements in microfluidic chips. The elaborated workflow allowed for quantitative analysis of the evolution of calcium carbonate precipitates in terms of their size, shape, and spatial distribution. At the same time, their influence on differential pressure could be observed as a measure of flow resistance. Consequently, porosity and permeability changes could be determined. Along with this paper, we published two data sets [Weinhardt et al., 2021b, Vahid Dastjerdi et al., 2021] and set the basis for two other publications. In the second publication [von Wolff et al., 2021], the simulation results of a pore-scale numerical model, developed by Lars von Wolff, were compared to the experimental data of the first paper [Weinhardt et al., 2021b]. We observed a good agreement between the experimental data and the model results. The numerical studies complemented the experimental observations in allowing for accurate analysis of crystal growth as a function of local velocity profiles. In particular, we observed that crystal aggregates tend to grow toward the upstream side, where the supply of reaction products is higher than on the downstream side. Crystal growth during biomineralization under continuous inflow is thus strongly dependent on the locally varying velocities in a porous medium. In the third publication [Weinhardt et al., 2022a], we conducted further microfluidic experiments based on the experimental setup and workflow of the first contribution and published another data set [Weinhardt et al., 2022b]. We used microfluidic cells with a different, more realistic pore structure and investigated the influence of different injection strategies. We found that the development of preferential flow paths during EICP application may depend on the given boundary conditions. Constant inflow rates can lead to the development of preferential flow paths and keep them open. Gradually reduced inflow rates can mitigate this effect. In addition, we concluded that the coexistence of multiple calcium carbonate polymorphs and their transformations could influence the temporal evolution of porosity-permeability relationships.Item Open Access Fluid-phase transitions in a multiphasic model of CO2 sequestration into deep aquifers : a fully coupled analysis of transport phenomena and solid deformation(Stuttgart : Institut für Mechanik (Bauwesen), Lehrstuhl für Kontinuumsmechanik, Universität Stuttgart, 2017) Häberle, Kai; Ehlers, Wolfgang (Prof. Dr.-Ing. Dr. h. c.)Item Open Access The future role of alternative powertrains and fuels in the German transport sector : a model based scenario analysis with respect to technical, economic and environmental aspects with a focus on road transport(2012) Özdemir, Enver Doruk; Voß, A. (Prof. Dr.-Ing.)The transport sector is facing the challenges of satisfying the ever increasing transport demand on the one hand and achieving greenhouse gas (GHG) emission reduction targets without compromising economic development on the other hand. There are various alternative fuels and powertrains which might play a role in the future of the German transport sector. Amongst these options, biofuels are considered to help lower GHG emissions. However, they are severely criticized to create an additional strain for the energy system and particularly for the transport sector with land area requirement for energy crop production, which may imply a competition with food production. This study aims to assess the future role of alternative fuels and powertrains in the German transport sector in terms of their costs, efficiencies, GHG emissions and land area requirement for energy crops. To fulfill this aim, a techno-economic analysis of all relevant fuels and powertrain options was performed and a model based approach was employed. The utilized model belongs to the TIMES (The Integrated MARKAL EFOM System) family and is a bottom-up linear cost optimization energy system model. A scenario analysis was employed in order to assess the effect of different technological, economic, environmental and political conditions on the overall system. The results of the scenario analysis indicated that the transport system will still be dominated by conventional powertrains in 2030. Alternative powertrains are projected to play only a secondary role until 2030. It is not expected that fuel cell or battery electric passenger cars will be introduced into the market until 2030 in Germany. Nevertheless, hybrid electric powertrains have to be used in the German passenger car sector under ambitious GHG emission reduction targets and high oil prices. The introduction of alternative powertrains (such as hybrid electric and fuel cell powertrain) is much more likely in the bus sector (especially for public buses) than in passenger cars or in the road freight sector. Furthermore conventional fuels are expected to remain an important part of the German transport system until 2030. However, not only conventional fuels will be utilized in the future, but also biofuels and hydrogen are required. It is concluded that the transport sector should not be the first sector to reduce GHG emissions within an overall GHG emission mitigation strategy. However, with the ambitious GHG emission reduction targets (such as self-commitment of the German government) some contributions should also come from the transport sector.Item Open Access Leaching of fly ash particulate matter in MEA solutions and its relevance to the CO2 capture process with flue gas of coal-fired power plants(2020) Schallert, Bernd; Scheffknecht, Günter (Prof. Dr.)This study underlines the relevance of leaching of fly ash particulate matter to carbon capture plants and strives for a better understanding of the solubility of various elements and heavy metals, especially Fe, in MEA solutions and of relevant leaching parameters.Item Open Access Enhancement of the REMix energy system model : global renewable energy potentials, optimized power plant siting and scenario validation(2014) Stetter, Daniel; Müller-Steinhagen, Hans (Prof. Dr.-Ing. habil. DEng/Auckland)As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool REMix-PlaSMo yields results as to where the volatile power technologies photovoltaics and wind are to be located within a country in order to gain distinct effects on their aggregated power output. Three different modes are implemented: (a.) Optimized plant siting in order to obtain the cheapest generation cost, (b.) a minimization of the photovoltaic and wind portfolio output variance and (c.) a minimization of the residual load variance. The third fundamental addition to the REMix model is the amendment of the module REMix-OptiMo with a new power transmission model based on the DC load flow approximation. Moreover, electricity imports originating from concentrating solar power plants located in North Africa and the Middle East are now feasible. All of the new capabilities and extensions of REMix are employed in three case studies: In case study 1, using the module REMix-EnDaT, a global potential assessment is carried out for 10 OECD world regions, deriving installable capacities, cost and full load hours for PV, CSP, wind and hydro power. According to the latter, photovoltaics will represent the cheapest technology in 2050, an average of 1634 full load hours could lead to an electricity generation potential of some 5500 PWh. Although CSP also taps solar irradiance, restrictions in terms of suitable sites for erecting power plants are more severe. For that reason, the maximum potential amounts to some 1500 PWh. However, thermal energy storage can be used, which, according to this assessment, could lead to 5400 hours of full load operation. Onshore wind power could tap a potential of 717 PWh by 2050 with an average of 2200 full load hours while offshore, wind power plants could achieve a total power generation of 224 PWh with an average of 3000 full load hours. The electricity generation potential of hydro power exceeds 3 PWh, 4600 full load hours of operation are reached on average. In case study 2, using the module REMix-PlaSMo, an assessment for Morocco is carried out as to determine limits of volatile power generation in portfolios approaching full supply based on renewable power. The volatile generation technologies are strategically sited at specific locations to take advantage of available resources conditions. It could be shown that the cost optimal share of volatile power generation without considering storage or transmission grid extensions is one third. Moreover, the average power generation cost using a portfolio consisting of PV, CSP, wind and hydro power can be stabilized at about 10 €ct/kWh by the year 2050. In case study 3, using the module REMix-OptiMo, a validation of a TRANS-CSP scenario based upon high shares of renewable power generation is carried out. The optimization is conducted on an hourly basis using a least cost approach, thereby investigating if and how demand is met during each hour of the investigated year. It could be shown, that the assumed load can safely be met in all countries for each hour using the scenario's power plant portfolio. Furthermore, it was proven that dispatchable renewable power generation, in particular CSP imports to Europe, have a system stabilizing effect. Using the suggested concept, the utilization of the transfer capacities between countries would decrease until 2050.