Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    VisRecall++: analysing and predicting visualisation recallability from gaze behaviour
    (2024) Wang, Yao; Jiang, Yue; Hu, Zhiming; Ruhdorfer, Constantin; Bâce, Mihai; Bulling, Andreas
    Question answering has recently been proposed as a promising means to assess the recallability of information visualisations. However, prior works are yet to study the link between visually encoding a visualisation in memory and recall performance. To fill this gap, we propose VisRecall++ - a novel 40-participant recallability dataset that contains gaze data on 200 visualisations and five question types, such as identifying the title, and finding extreme values.We measured recallability by asking participants questions after they observed the visualisation for 10 seconds.Our analyses reveal several insights, such as saccade amplitude, number of fixations, and fixation duration significantly differ between high and low recallability groups.Finally, we propose GazeRecallNet - a novel computational method to predict recallability from gaze behaviour that outperforms several baselines on this task.Taken together, our results shed light on assessing recallability from gaze behaviour and inform future work on recallability-based visualisation optimisation.
  • Thumbnail Image
    ItemOpen Access
    SalChartQA: question-driven saliency on information visualisations
    (2024) Wang, Yao; Wang, Weitian; Abdelhafez, Abdullah; Elfares, Mayar; Hu, Zhiming; Bâce, Mihai; Bulling, Andreas
    Understanding the link between visual attention and user’s needs when visually exploring information visualisations is under-explored due to a lack of large and diverse datasets to facilitate these analyses. To fill this gap, we introduce SalChartQA - a novel crowd-sourced dataset that uses the BubbleView interface as a proxy for human gaze and a question-answering (QA) paradigm to induce different information needs in users. SalChartQA contains 74,340 answers to 6,000 questions on 3,000 visualisations. Informed by our analyses demonstrating the tight correlation between the question and visual saliency, we propose the first computational method to predict question-driven saliency on information visualisations. Our method outperforms state-of-the-art saliency models, improving several metrics, such as the correlation coefficient and the Kullback-Leibler divergence. These results show the importance of information needs for shaping attention behaviour and paving the way for new applications, such as task-driven optimisation of visualisations or explainable AI in chart question-answering.
  • Thumbnail Image
    ItemOpen Access
    Impact of gaze uncertainty on AOIs in information visualisations
    (2022) Wang, Yao; Koch, Maurice; Bâce, Mihai; Weiskopf, Daniel; Bulling, Andreas
    Gaze-based analysis of areas of interest (AOIs) is widely used in information visualisation research to understand how people explore visualisations or assess the quality of visualisations concerning key characteristics such as memorability. However, nearby AOIs in visualisations amplify the uncertainty caused by the gaze estimation error, which strongly influences the mapping between gaze samples or fixations and different AOIs. We contribute a novel investigation into gaze uncertainty and quantify its impact on AOI-based analysis on visualisations using two novel metrics: the Flipping Candidate Rate (FCR) and Hit Any AOI Rate (HAAR). Our analysis of 40 real-world visualisations, including human gaze and AOI annotations, shows that gaze uncertainty frequently and significantly impacts the analysis conducted in AOI-based studies. Moreover, we analysed four visualisation types and found that bar and scatter plots are usually designed in a way that causes more uncertainty than line and pie plots in gaze-based analysis.
  • Thumbnail Image
    ItemOpen Access
    Saliency3D: a 3D saliency dataset collected on screen
    (2024) Wang, Yao; Dai, Qi; Bâce, Mihai; Klein, Karsten; Bulling, Andreas
    While visual saliency has recently been studied in 3D, the experimental setup for collecting 3D saliency data can be expensive and cumbersome. To address this challenge, we propose a novel experimental design that utilizes an eye tracker on a screen to collect 3D saliency data. Our experimental design reduces the cost and complexity of 3D saliency dataset collection. We first collect gaze data on a screen, then we map them to 3D saliency data through perspective transformation. Using this method, we collect a 3D saliency dataset (49,276 fixations) comprising 10 participants looking at sixteen objects. Moreover, we examine the viewing preferences for objects and discuss our findings in this study. Our results indicate potential preferred viewing directions and a correlation between salient features and the variation in viewing directions.