Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
19 results
Search Results
Item Open Access Die Spaltung von Arylether-Bindungen durch initiale Dioxygenierung: Grundlage des bakteriellen Dioxinabbaus(1991) Engesser, Karl-Heinrich; Strubel, Volker; Kirchner, S.; Schestag, S.; Schulte, P.; Knackmuss, Hans-JoachimBei der Untersuchung des bakteriellen Abbaus von Arylether-Modellsubstraten wie 2-Alkoxybenzoat, Carboxybiphenylether und Dibenzofuran wurde ein grundlegender Mechanismus für die Spaltung von Aryletherbindungen aufgedeckt. Demnach bewirken Dioxygenase-Enzyme unter Einführung zweier Hydroxylgruppen die Überführung von Ether- in Hemiacetalbindungen. Diese instabilen Hemiacetale reagieren unter Rearomatisierung zu aliphatischen Alkoholen und/oder Phenolverbindungen ab. Enzyme dieses Typs sind auch in der Lage, Dioxine zu spalten.Item Open Access Microbial metabolism of chlorosalicylates: effect of prolonged subcultivation on constructed strains(1986) Rubio, Miguel Angel; Engesser, Karl-Heinrich; Knackmuss, Hans-JoachimThe hybrid strain Pseudomonas sp. WR4016 was subcultivated with increasing concentrations of 5-chlorosalicylate (5rarr10 mM) as sole carbon source over a period of 9 months. At intervals of approximately 3 months derivative strains WR4017, WR4018 and WR4019 were isolated which exhibited higher growth rates and increased substrate tolerance. Comparative analysis of the turnover rates of the key enzymes in chlorosalicylate degradation showed that the adaptation process did not result from structural modifications of these proteins. Instead, balanced over-production of the salicylate hydroxylase and catechol 1,2-dioxygenase prevented the accumulation of toxic chlorocatechols and accounted for the reduction of the doubling times with 4- or 5-chlorosalicylate. A comparative analysis of a genetically engineered chlorosalicylate degrader PL300-1 showed similar regulatory patterns as the most advanced isolate WR4019 from the adaptation series.Item Open Access Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP 134(1993) Pieper, Dietmar Helmut; Stadler-Fritzsche, Karin; Engesser, Karl-Heinrich; Knackmuss, Hans-Joachim2-Chloro-4-methylphenoxyacetate is not a growth substrate for Alcaligenes eutrophus JMP 134 and JMP 1341. It is, however, being transformed by enzymes of 2,4-dichlorophenoxyacetic acid metabolism to 2-chloro-4-methyl-cis, cis-muconate, which is converted by enzymatic 1,4-cycloisomerization to 4-carboxymethyl-2-chloro-4-methylmuconolactone as a dead end metabolite. Chemically, only 3,6-cycloisomerization occurs, giving rise to both diastereomers of 4-carboxychloromethyl-3-methylbut-2-en-4-olide. Those lactones harbonring a chlorosubstituent on the 4-carboxymethyl side chain were surprisingly stable under physiological as well as acidic conditions.Item Open Access Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics(1987) Rojo, Fernando; Pieper, Dietmar H.; Engesser, Karl-Heinrich; Knackmuss, Hans-Joachim; Timmis, Kenneth N.Genetic engineering is a powerful means of accelerating the evolution of new biological activities and has considerable potential for constructing microorganisms that can degrade environmental pollutants. Critical enzymes from five different catabolic pathways of three distinct soil bacteria have been combined in patchwork fashion into a functional ortho cleavage route for the degradation of methylphenols and methylbenzoates. The new bacterium thereby evolved was able to degrade and grow on mixtures of chloro- and methylaromatics that were toxic even for the bacteria that could degrade the individual components of the mixtures. Except for one enzymatic step, the pathway was fully regulated and its component enzymes were only synthesized in response to the presence of pathway substrates.Item Open Access Enrichment of dibenzofuran utilizing bacteria with high co-metabolic potential towards dibenzodioxin and other anellated aromatics(1989) Strubel, Volker; Rast, Hans G.; Fietz, Walter H.; Knackmuss, Hans-Joachim; Engesser, Karl-HeinrichDibenzofuran degrading bacteria were enriched from various environmental sources. A mutualistic mixed culture of strain DPO 220 and strain DPO 230 was characterized. Strain DPO 220 alone showed limited growth with dibenzofuran as sole source of carbon and energy (td ≥ 4.5 h). A labile degradation product, C12H10O5, and salicylate were isolated from the culture fluid. Salicylate was found to be a central intermediate of DBF-degradation.Strain DPO 220 co-metabolized a wide range of anellated aromatics as well as heteroaromatics. High rates of co-oxidation of dibenzodioxin demonstrate analogue-enrichment to be a powerful technique for selecting enzymatic activities for otherwise non-degradable substrates.Item Open Access (+)-4-Carboxymethyl-2,4-dimethylbut-2-en-4-olide as dead-end metabolite of 2,4-dimethylphenoxyacetic acid or 2,4-dimethylphenol by alcaligenes eutrophus JMP 134(1990) Pieper, Dietmar H.; Engesser, Karl-Heinrich; Knackmuss, Hans-Joachim2,4-Dimethylphenoxyacetic acid and 2,4-dimethylphenol are not growth substrates for Alcaligenes eutrophus JMP 134 although being cooxidized by 2,4-dichlorophenoxyacetate grown cells. None of the relevant catabolic pathways were induced by the dimethylphenoxyacetate, 3,5-Dimethylcatechol is not subject to metacleavage. The alternative ortho-eleavage is also unproductive and gives rise to (+)-4-carboxymethyl-2,4-dimethylbut-2-en-4-olide as a dead-end metabolite. High yields of this metabolite were obtained with the mutant Alcaligenes eutrophys JMP 134-1 which constitutively expresses the genes of 2,4-dichlorophenoxyacetic acid metabolism.Item Open Access Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases(1992) Layh, Norman; Stolz, Andreas; Förster, Siegfried; Effenberger, Franz; Knackmuss, Hans-JoachimBacteria were enriched from soil samples, using benzylcyanide, α-methyl-, α-ethyl- or α-methoxybenzyl-cyanide as the sole source of nitrogen. All isolated strains belonged to the genus Pseudomonas. Resting cells of the isolates hydrolysed O-acetylmandelonitrile to O-acetylmandelic acid, O-acetylmandelic acid amide and mandelic acid. From racemic O-acetylmandelonitrile all isolates preferentially formed R(–)-acetylmandelic acid ( = d-acetylmandelic acid). The enantioselective hydrolysis of O-acetylmandelonitrile could also be demonstrated in vitro. Crude extracts did not hydrolyse O-acetylmandelic acid amide indicating an enantioselective nitrilase rather than a nitrile hydratase/amidase system.Item Open Access Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134(1988) Pieper, Dietmar H.; Reineke, Walter; Engesser, Karl-Heinrich; Knackmuss, Hans-JoachimOf eleven substituted phenoxyacetic acids tested, only three (2,4-dichloro-, 4-chloro-2-methyl- and 2-methylphenoxyacetic acid) served as growth substrates for Alcaligenes eutrophus JMP 134. Whereas only one enzyme seems to be responsible for the initial cleavage of the ether bond, there was evidence for the presence of three different phenol hydroxylases in this strain. 3,5-Dichlorocatechol and 5-chloro-3-methylcatechol, metabolites of the degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid, respectively, were exclusively metabolized via the ortho-cleavage pathway. 2-Methylphenoxyacetic acid-grown cells showed simultaneous induction of meta- and ortho-cleavage enzymes. Two catechol 1,2-dioxygenases responsible for ortho-cleavage of the intermediate catechols were partially purified and characterized. One of these enzymes converted 3,5-dichlorocatechol considerably faster than catechol or 3-chlorocatechol. A new enzyme for the cycloisomerisation of muconates was found, which exhibited high activity against the ring-cleavage products of 3,5-dichlorocatechol and 4-chlorocatechol, but low activities against 2-chloromuconate and muconate.Item Open Access Purification and characterization of 4-methylmuconolactone methylisomerase, a novel enzyme of the modified 3-oxoadipate pathway in the gram-negative bacterium Alcaligenes eutrophus JMP 134(1990) Pieper, Dietmar H.; Stadler-Fritzsche, Karin; Knackmuss, Hans-Joachim; Engesser, Karl-Heinrich; Bruce, Neil C.; Cain, Ronald B.4-Carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone) isomerase, transforming 4-methyl-2-enelactone to 3-methyl-2-enelactone, was purified from a derivative strain of Pseudomonas sp. B13, named B13 FR1, carrying the plasmid pFRC2OP. This plasmid contained the isomerase gene cloned from Alcaligenes eutrophus JMP 134, which uses 4-methyl-2-enelactone as a carbon source. The enzyme consists of a single peptide chain of Mr 40,000 as judged by SDS/PAGE. In addition to 4-methyl-2-enelactone, the putative reaction intermediate, 1-methyl-3,7-dioxo-2,6-dioxy-bicyclo[3.3.0]octane (1-methylbislactone), was a substrate for the enzyme, but kinetic data presented did not favour its role as a reaction intermediate. Isomeric methyl-substituted 4-carboxymethylbut-2-en-4-olides were neither substrates nor inhibitors. Possible reaction mechanisms are discussed.Item Open Access Dioxygenolytic cleavage of aryl ether bonds: 1,2-Dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3- and 4-carboxy biphenyl ether degradation(1990) Engesser, Karl-Heinrich; Fietz, Walter H.; Fischer, Peter; Schulte, P.; Knackmuss, Hans-JoachimA bacterial strain, Pseudomonas sp. POB 310, was enriched with 4-carboxy biphenyl ether as sole source of carbon and energy. Resting cells of POB 310 co-oxidize a substrate analogue, 4-carboxybenzophenone, yielding 1,2-dihydro-1,2-dihydroxy-4-carboxy-benzophenone. The ether bond of 3- and 4-carboxy biphenyl ether is cleaved analogously by initial 1,2-dioxygenation, yielding a hemiacetal which is hydrolysed to proto-catechuate and phenol. These intermediates are degraded via an ortho and meta pathway, respectively. Alternative 2,3- and 3,4-dioxygenation can be ruled out as triggering steps in carboxy biphenyl ether degradation.