Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
3 results
Search Results
Item Open Access Spatio-temporal evaluation of GPM-IMERGV6.0 final run precipitation product in capturing extreme precipitation events across Iran(2022) Bakhtar, Aydin; Rahmati, Akbar; Shayeghi, Afshin; Teymoori, Javad; Ghajarnia, Navid; Saemian, PeymanExtreme precipitation events such as floods and droughts have occurred with higher frequency over the recent decades as a result of the climate change and anthropogenic activities. To understand and mitigate such events, it is crucial to investigate their spatio-temporal variations globally or regionally. Global precipitation products provide an alternative way to the in situ observations over such a region. In this study, we have evaluated the performance of the latest version of the Global Precipitation Measurement-Integrated Multi-satellitE Retrievals (GPM-IMERGV6.0 Final Run (GPM-IMERGF)). To this end, we have employed ten most common extreme precipitation indices, including maximum indices (Rx1day, Rx5day, CDD, and CWD), percentile indices (R95pTOT and R99pTOT), and absolute threshold indices (R10mm, R20mm, SDII, and PRCPTOT). Overall, the spatial distribution results for error metrics showed that the highest and lowest accuracy for GPM-IMERGF were reported for the absolute threshold indices and percentile indices, respectively. Considering the spatial distribution of the results, the highest accuracy of GPM-IMERGF in capturing extreme precipitations was observed over the western highlands, while the worst results were obtained along the Caspian Sea regions. Our analysis can significantly contribute to various hydro-metrological applications for the study region, including identifying drought and flood-prone areas and water resources planning.Item Open Access A probabilistic approach to characterizing drought using satellite gravimetry(2024) Saemian, Peyman; Tourian, Mohammad J.; Elmi, Omid; Sneeuw, Nico; AghaKouchak, AmirIn the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor GRACE Follow‐On (GRACE‐FO), have become invaluable tools for characterizing drought through measurements of Total Water Storage Anomaly (TWSA). However, the existing approaches have often overlooked the uncertainties in TWSA that stem from GRACE orbit configuration, background models, and intrinsic data errors. Here we introduce a fresh view on this problem which incorporates the uncertainties in the data: the Probabilistic Storage‐based Drought Index (PSDI). Our method leverages Monte Carlo simulations to yield realistic realizations for the stochastic process of the TWSA time series. These realizations depict a range of plausible drought scenarios that later on are used to characterize drought. This approach provides probability for each drought category instead of selecting a single final category at each epoch. We have compared PSDI with the deterministic approach (Storage‐based Drought Index, SDI) over major global basins. Our results show that the deterministic approach often leans toward an overestimation of storage‐based drought severity. Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, spanning continents from the United States to Europe, the Middle East, Southern Africa, South America, and Australia. In each case, PSDI emerges as a reliable indicator for characterizing drought conditions, providing a more comprehensive perspective than conventional deterministic indices. In contrast to the common deterministic view, our probabilistic approach provides a more realistic characterization of the TWS drought, making it more suited for adaptive strategies and realistic risk management.Item Open Access Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series(2022) Behling, Robert; Roessner, Sigrid; Foerster, Saskia; Saemian, Peyman; Tourian, Mohammad J.; Portele, Tanja C.; Lorenz, ChristofIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km 2) and a significant cultivation intensification (48,000 km 2). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km 2), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km 2, mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.