Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Reliability as a key driver for a sustainable design of adaptive load-bearing structures
    (2022) Efinger, Dshamil; Ostertag, Andreas; Dazer, Martin; Borschewski, David; Albrecht, Stefan; Bertsche, Bernd
    The consumption of construction materials and the pollution caused by their production can be reduced by the use of reliable adaptive load-bearing structures. Adaptive load-bearing structures are able to adapt to different load cases by specifically manipulating internal stresses using actuators installed in the structure. One main aspect of quality is reliability. A verification of reliability, and thus the safety of conventional structures, was a design issue. When it comes to adaptive load-bearing structures, the material savings reduce the stiffness of the structure, whereby integrated actuators with sensors and a control take over the stiffening. This article explains why the conventional design process is not sufficient for adaptive load-bearing structures and proposes a method for demonstrating improved reliability and environmental sustainability. For this purpose, an exemplary adaptive load-bearing structure is introduced. A linear elastic model, simulating tension in the elements of the adaptive load-bearing structure, supports the analysis. By means of a representative local load-spectrum, the operating life is estimated based on Woehler curves given by the Eurocode for the critical notches. Environmental sustainability is increased by including reliability and sustainability in design. For an exemplary high-rise adaptive load-bearing structure, this increase is more than 50%.
  • Thumbnail Image
    ItemOpen Access
    Environmental impacts of renewable insulation materials
    (2021) Geß, Andreas; Lorenz, Manuel; Tolsdorf, Anna; Albrecht, Stefan
    According to the IEA Global Status Report for Buildings and Construction 2019, one of the main industry sectors causing environmental impacts is the construction sector. Hence, construction materials from renewable resources are expected to have a large potential to decrease these impacts. In this study, a Life Cycle Assessment (LCA) was conducted for four different insulation materials from renewable feedstock: insulation made from pasture grass, seaweed, reed, and recycled jute fibres. Additionally, the effects on land use change were evaluated for pasture grass insulation using the LANCA® methodology. To put the LCA results in relation to those of non-renewable resources, a comparison of standardized LCA values for conventional insulation materials is presented. In general, the renewable insulation materials show fewer environmental impacts than their conventional counterparts. In particular, these materials have advantages regarding greenhouse gas emissions and their impact on climate change. Of the analyzed materials, seaweed showed the overall lowest emissions. It can be concluded that insulation materials from non-mineral, non-fossil, and non-wooden resources are still fairly niche in terms of market share, but they have extraordinary potential in decreasing the environmental impacts of construction ventures.
  • Thumbnail Image
    ItemOpen Access
    Integration of LCA in the planning phases of adaptive buildings
    (2019) Schlegl, Friederike; Honold, Clemens; Leistner, Sophia; Albrecht, Stefan; Roth, Daniel; Haase, Walter; Leistner, Philip; Binz, Hansgeorg; Sobek, Werner
    The high consumption of resources in the building industry requires a significant reduction of material in buildings and consequently a reduction of emissions over all phases of the life cycle. This is the aim of the Collaborative Research Centre 1244 Adaptive Skins and Structures for the Built Environment of Tomorrow, funded by the German Research Foundation (DFG), which addresses research on the development and integration of adaptive systems in building structures and skins. New approaches in building planning are required for the implementation of adaptive buildings. Therefore, a multidisciplinary team from various fields such as architecture, civil and mechanical engineering, and system dynamics is necessary. The environmental impacts of the whole life cycle have to be considered for an integral planning process for adaptive buildings right from the beginning. For the integration of the Life Cycle Assessment (LCA), four temporal and content-related interfaces were identified in the planning process. Inputs and outputs of the LCA were defined for the relevant planning stages in order to enable the greatest possible benefit for the planners and to minimize the environmental impacts as far as possible. The result of the research work is a methodology that can be used in the future to reduce life cycle-related environmental impacts in the planning process of adaptive buildings (ReAdapt).
  • Thumbnail Image
    ItemOpen Access
    The 10th International Conference on Life Cycle Management 2021 : Stuttgart, Germany, September 05-08, 2021
    (2021) Fischer, Matthias; Barkmeyer, Mercedes; Albrecht, Stefan; Braune, Anna; Leistner, Philip; Seifert, Rainer; Kreissig, Johannes