Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Screening, cloning and biochemical characterisation of novel esterases from bacillus sp. associated with the marine sponge aplysina aerophoba
    (2005) Karpushova, Anna Alexandrovna; Brümmer, Franz; Lange, Stefan; Schmid, Rolf D.
    Two novel esterases (EstB1 and EstB2) were isolated from a genomic library of Bacillus sp. associated with the marine sponge Aplysina aerophoba. EstB1 shows low identity (26-44 %)with the published hydrolases of the genus Bacillus, whereas EstB2 shows high identity (73-74 %) with the carboxylesterases from B. cereus and B. anthracis. Both esterases were efficiently expressed in Escherichia coli under the control of T7 promoter using the vector pET-22b(+). Recombinant EstB1 was purified in a single step to electrophoretic homogeneity by IMAC. A method for the refolding of inclusion bodies formed by the recombinant EstB2 was established to obtain active enzyme. Substrate specificity of the two enzymes towards pnitrophenyl and methyl esters and the respective kinetic parameters Km and Vmax were determined. The temperature optima of EstB1 and EstB2 were determined to be in the range of 30-50°C and 20-35°C, respectively. The pH optima were found to be in the range of 6.5-7.5 and 6.5-8.0, respectively. Both enzymes showed the highest stability in up to 50 % (v/v) DMSO followed by methanol, ethanol and 2-propanol. The influence of high NaCl and KCl concentrations was tested. The inhibition effect of 10-50 mM Zn2+ and 50 mM Mg2+ and Ca2+ ions was observed for both esterases. 1-5 mM PMSF deactivated the enzymes, whereas β-mercaptoethanol, DTT and EDTA had no effect on the enzymes activity.
  • Thumbnail Image
    ItemOpen Access
    In situ laboratory for plastic degradation in the Red Sea
    (2022) Brümmer, Franz; Schnepf, Uwe; Resch, Julia; Jemmali, Raouf; Abdi, Rahma; Kamel, Hesham Mostafa; Bonten, Christian; Müller, Ralph-Walter
    Degradation and fragmentation of plastics in the environment are still poorly understood. This is partly caused by the lack of long-term studies and methods that determine weathering duration. We here present a novel study object that preserves information on plastic age: microplastic (MP) resin pellets from the wreck of the SS Hamada, a ship that foundered twenty-nine years ago at the coast of Wadi el Gemal national park, Egypt. Its sinking date enabled us to precisely determine how long MP rested in the wreck and a nearby beach, on which part of the load was washed off. Pellets from both sampling sites were analyzed by microscopy, X-ray tomography, spectroscopy, calorimetry, gel permeation chromatography, and rheology. Most pellets were made of low-density polyethylene, but a minor proportion also consisted of high-density polyethylene. MP from inside the wreck showed no signs of degradation compared to pristine reference samples. Contrary, beached plastics exhibited changes on all structural levels, which sometimes caused fragmentation. These findings provide further evidence that plastic degradation under saltwater conditions is comparatively slow, whereas UV radiation and high temperatures on beaches are major drivers of that process. Future long-term studies should focus on underlying mechanisms and timescales of plastic degradation.