Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
2 results
Search Results
Item Open Access Tailored lace : moldless fabrication of 3D bio-composite structures through an integrative design and fabrication process(2021) Lehrecke, August; Tucker, Cody; Yang, Xiliu; Baszynski, Piotr; Dahy, HanaaThis research demonstrates an integrative computational design and fabrication workflow for the production of surface-active fibre composites, which uses natural fibres, revitalises a traditional craft, and avoids the use of costly molds. Fibre-reinforced polymers (FRPs) are highly tunable building materials, which gain efficiency from fabrication techniques enabling controlled fibre direction and placement in tune with load-bearing requirements. These techniques have evolved closely with industrial textile processes. However, increased focus on automation within FRP fabrication processes have overlooked potential key benefits presented by some lesser-known traditional techniques of fibre arrangement. This research explores the process of traditional bobbin lace-making and applies it in a computer-aided design and fabrication process of a small-scale structural demonstrator in the form of a chair. The research exposes qualities that can expand the design space of FRPs, as well as speculates about the potential automation of the process. In addition, Natural Fibre-Reinforced Polymers (NFRP) are investigated as a sustainable and human-friendly alternative to more popular carbon and glass FRPs.Item Open Access Integrating ionic electroactive polymer actuators and sensors into adaptive building skins: potentials and limitations(2020) Neuhaus, Raphael; Zahiri, Nima; Petrs, Jan; Tahouni, Yasaman; Siegert, Jörg; Kolaric, Ivica; Dahy, Hanaa; Bauernhansl, ThomasBuilding envelopes separate the confined interior world engineered for human comfort and indoor activity from the exterior world with its uncontainable climatic forces and man-made immission. In the future, active, sustainable and lightweight building skins are needed to serve as an adaptive interface to govern the building-physical interactions between these two worlds. This article provides conceptual and experimental results regarding the integration of ionic electroactive polymer sensors and actuators into fabric membranes. The ultimate goal is to use this technology for adaptive membrane building skins. These devices have attracted high interest from industry and academia due to their small actuation voltages, relatively large actuation and sensing responses and their flexible and soft mechanical characteristics. However, their complex manufacturing process, sophisticated material compositions and their environmental sensitivity have limited the application range until now. The article describes the potentials and limitations of employing such devices for two different adaptive building functionalities: first, as a means of ventilation control and humidity regulation by embedding small actuated apertures into a fabric membrane, and second, as flexible, energy- and cost-efficient distributed sensors for external load monitoring of such structures. The article focusses on designing, building and testing of two experimental membrane demonstrators with integrated polymer actuators and sensors. It addresses the challenges encountered and draws conclusions for potential future optimization at the device and system level.