Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Dynamic water masks from optical satellite imagery
    (München : Verlag der Bayerischen Akademie der Wissenschaften, 2019) Elmi, Omid; Sneeuw, Nico (Prof. Dr.-Ing.)
    Investigation of the global freshwater system has a vital role in critical issues e.g. sustainable development of water resources, acceleration of the hydrological cycle, variability of global sea level. Measurement of river streamflow is vital for such investigations as it gives a reliable estimate of freshwater fluxes over the continents. Despite such importance, the number of river discharge gauging station has been decreasing. At the same time, information on the global freshwater system has been increasing because of various types of ground observations, water-use information and spaceborne geodetic observations. Nevertheless, we cannot answer properly crucial questions about the amount of freshwater available on a certain river basin, or the spatial and temporal dynamics of freshwater variations and discharge, or the distribution of world’s freshwater resources in the future. The lack of comprehensive measurements of surface water storage and river discharge is a major impediment for a realistic understanding of the hydrological water cycle, which is a must for answering the aforementioned questions. This thesis aims to improve the methods for monitoring the surface extent of inland water bodies using satellite images. Satellite imaging systems capture the Earth surface in a wide variety of spectral and spatial resolution repeatedly. Therefore satellite imagery provides the opportunity to monitor the spatial change in shorelines, which can serve as a way to determine the water extent. Each band of a multispectral image reveals a unique characteristic of the Earth surface features like surface water extent. However selecting the spectral bands which provide the relevant information is a challenging task. In this thesis, we analyse the potential of multispectral transformations like Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) to tackle this issue by condensing the information available in all spectral bands in just a few uncorrelated variables. Moreover, we investigate how the change between multispectral images at different epochs can be highlighted by using the transformations. This study proposes an automatic algorithm for extracting the lake water extent from MODIS images and generating dynamics lake masks. For improving the accuracy of the lake masks and computational efficiency of the algorithm, two masks are defined for limiting the search area. The restricting masks are developed according to DEM of the surrounding area together with a map of the long-term variation of pixel values. Subsequently, an unsupervised pixel-based classification algorithm is applied for defining the lake coastline. The algorithm particularly deals with the challenges of generating long time series of lake masks. We apply the algorithm on five lakes in Africa and Asia, each of which demonstrates a challenge for lake area monitoring. However in the validation section, we demonstrate that the algorithm can generate accurate dynamic lake masks. Rivers show diverse behaviour along their path due to the contribution of different parameters like gradient of the elevation, river slope, tributaries and river bed morphology. Therefore for generating accurate river reach mask, we need to consider additional sources of information apart from pixel intensity. The region-based classification algorithm that we propose in this study takes advantages of all types of available information including pixel intensity and spatial and temporal interactions. Markov Random Fields provide a flexible frame for interaction between different sources of data and constraint. To find the most probable configuration of the field, the Maximum A Posteriori solution for the MRF must be found. To this end, the problem is reshaped as an energy minimization. The energy function is minimized applying graph cuts as a powerful optimization technique. The uncertainty in the graph cuts solution is also measured by calculating the minimum marginal energies. The proposed method is applied to four rivers reaches with different hydrological characteristics. We validate the obtained river area time series by comparing with in situ river discharge and satellite altimetric water level time series. Moreover, in this study, we present river discharge estimation models using the generated river reach masks. Our aim is to find an empirical relationship between the average river reach width and river discharge. The statistics in the validation periods support the idea of using river width-discharge prediction models as a complementary technique to the other spaceborne geodetic river discharge prediction approaches.
  • Thumbnail Image
    ItemOpen Access
    The role of multispectral image transformations in change detection
    (2015) Elmi, Omid
    In recent decades, remote sensing techniques have been applied as a powerful tool to provide temporal variation of Earth related phenomena. To understand the impact of climate change and human activities on Earth water resources, monitoring the variation of water storage over a long period is a primary issue. On the other hand, this variation is fundamental to estimate the hydroelectric power generation variation and fresh water recreation. Among the spaceborne sensors, optical and SAR satellite imagery provide the opportunity to monitor the spatial change in coastline, which can serve as a way to determine the water extent repeatedly in an appropriate time interval. While water absorbs nearly all the sunlight in near-infrared wavelength, the water bodies appear very dark at this band in an optical image. So applying a threshold on the image histogram is a common way to build the water mask. Despite its straightforward procedure, precise distinctions among water bodies may not be possible in some regions or seasons because of the complicated relationship between water and land and also because of the effect of vegetation. As well as thresholding, other change detection method are widely used to monitor the extent of water bodies. Multispectral transformation analyses like PCA and CCA are able to highlight the important information about the change in all spectral bands and also to reduce the dimension of data. In this way, their potential to improve the quality of satellite images and also reduce the noise level must be assessed. In this thesis, we have two general objectives. First improving the quality of the multispectral image applying PCA on spectral bands and then reconstructing the image using just a certain number of PCs. Number of the PCs and the selecting strategy appropriate PCs are the main challenge of this procedure. Highlighting the change between two multispectral images applying transformation like PCA and CCA is the other objective. Interpreting the transformed images are not straightforward and in most cases, comparing with the original images could be a solution. We examine different scenarios to examine the performance of the spectral transformations in change detection.
  • Thumbnail Image
    ItemOpen Access
    A probabilistic approach to characterizing drought using satellite gravimetry
    (2024) Saemian, Peyman; Tourian, Mohammad J.; Elmi, Omid; Sneeuw, Nico; AghaKouchak, Amir
    In the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor GRACE Follow‐On (GRACE‐FO), have become invaluable tools for characterizing drought through measurements of Total Water Storage Anomaly (TWSA). However, the existing approaches have often overlooked the uncertainties in TWSA that stem from GRACE orbit configuration, background models, and intrinsic data errors. Here we introduce a fresh view on this problem which incorporates the uncertainties in the data: the Probabilistic Storage‐based Drought Index (PSDI). Our method leverages Monte Carlo simulations to yield realistic realizations for the stochastic process of the TWSA time series. These realizations depict a range of plausible drought scenarios that later on are used to characterize drought. This approach provides probability for each drought category instead of selecting a single final category at each epoch. We have compared PSDI with the deterministic approach (Storage‐based Drought Index, SDI) over major global basins. Our results show that the deterministic approach often leans toward an overestimation of storage‐based drought severity. Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, spanning continents from the United States to Europe, the Middle East, Southern Africa, South America, and Australia. In each case, PSDI emerges as a reliable indicator for characterizing drought conditions, providing a more comprehensive perspective than conventional deterministic indices. In contrast to the common deterministic view, our probabilistic approach provides a more realistic characterization of the TWS drought, making it more suited for adaptive strategies and realistic risk management.
  • Thumbnail Image
    ItemOpen Access
    Current availability and distribution of Congo Basin’s freshwater resources
    (2023) Tourian, Mohammad J.; Papa, Fabrice; Elmi, Omid; Sneeuw, Nico; Kitambo, Benjamin; Tshimanga, Raphael M.; Paris, Adrien; Calmant, Stéphane
    The Congo Basin is of global significance for biodiversity and the water and carbon cycles. However, its freshwater availability and distribution remain relatively unknown. Using satellite data, here we show that currently the Congo Basin’s Total Drainable Water Storage lies within a range of 476 km 3 to 502 km 3 , unevenly distributed throughout the region, with 63% being stored in the southernmost sub-basins, Kasaï (220-228 km 3 ) and Lualaba (109-169 km 3 ), while the northern sub-basins contribute only 173 ± 8 km 3 . We further estimate the hydraulic time constant for draining its entire water storage to be 4.3 ± 0.1 months, but, regionally, permanent wetlands and large lakes act as resistors resulting in greater time constants of up to 105 ± 3 months. Our estimate provides a robust basis to address the challenges of water demand for 120 million inhabitants, a population expected to double in a few decades.